Chapter 6

Organic Chemistry Answers

Problem Set 10 Progressive Answers - Organic Chemistry BTG 1
Problem Set 10 Repetitive Answers -Organic Chemistry BTG 10
Problem Set 11 Progressive Answers - Organic Functional Groups 15
Problem Set 11 Repetitive Answers - Organic Functional Groups 29
Problem Set 12 Progressive Answers - Organic Reactions and Empirical Formula 46
Problem Set 12 Repetitive Answers-Organic Reactions and Empirical Formula 59

Problem Set 10 - Organic Chemistry BTG Progressive Questions

Concept 1

Alkanes and Alkenes - Progressive Questions Answers

IUPAC Naming of Alkanes and Alkenes: Q1, Q2, Q3
1.
[12 marks]

(a) Methane (1)	(b)	(c) Hexane (1)
(d) Ethene (1)	(e)	(f)
(g) 2,3-dimethylpentane (1)	(h) trans-1-chloropropene	(i) 1,1,1-tribromo-3-methylpentane (1)
(j) cis-but-2-ene (1)	(k) 5-chloro-4-methylhex-1-ene (1)	(I) 4-bromo-3,3-dichloro-4-methylheptane (1)

2.

[12 marks]
(a)

(1)
(b)

(1)

(d)

(e)

(f)

(g)

(i)

(1)
(1)

(k)

(1)

(I)

(1)
(j)
(h)

(1)

(1)
3.
[13 marks]

Name of organic compound:	Correct	Incorrect
1-methylprop-2-ene		\times (1)
Correct name if name is incorrect: cis-but-2-ene or trans-but-2-ene (1)		
2-ethylpentane		\times (1)
Correct name if name is incorrect: 3-methylhexane (1)		
cis-1,1-dichloropropene		\times (1)
Correct name if name is incorrect: 1,1-dichloropropene		
3-propyloctane		\times (1)
Correct name if name is incorrect: 4-ethylnonane (1)		
2-methylbut-2-ene	\checkmark (1)	
Correct name if name is incorrect:		

Correct name if name is incorrect: 1,2-diiodo-4-methylhexane (1)
trans-pent-3-ene
Correct name if name is incorrect: trans-pent-2-ene (1)

Points to note: Draw out the compound as this will allow you to see any issues with the incorrect name given

Marking Criteria	Marks Allocated		
\bullet Correctly determines if name is correct or incorrect	$1-7$		
\bullet Provides correct name if name is incorrect	$1-6$		

Isomerism: Q4, Q5, Q6

4.

(a) An isomer is a compound with the same molecular formula but a different structural formula (1). Two types of isomers are chain isomers and position isomers. Chain isomers are those with a differing parent carbon chain length whereas position isomers are those where the parent carbon chain length is kept constant, but the position of the functional group/attachments is changed (1).

Marking Criteria	Marks Allocated		
\bullet Correctly defines isomer	1		
\bullet Provides explains structural and positional isomer	$1-2$		
$\mathbf{3}$			

(b) (i) Yes, she is correct.

Ethene (1)
(ii) Yes, she is correct.

1,1-dichloroethene

cis-1,2-dichloroethene (1)

trans-1,2-dichloroethene (1)
(iii) No she is incorrect.

1-chloropropane (1)

2-chloropropane
(iv) Yes she is correct.

Pentane (1)

Methylbutane (1)

Dimethylpropane
(1)
(c) Alkenes have a double bond functional group which restricts the rotation of atoms about this double bond and therefore creates cis-trans isomerism (1). Alkanes are only comprised of single bonds and therefore do not exhibit cis-trans isomerism because their single bonds allow for the free rotation of all their atoms (1).

Marking Criteria	Marks Allocated		
\bullet	Alkenes have double bonds which restricts rotation of connected		
atoms, alkanes have single bonds which allow for free rotation.		$\quad 1$	1
:---			
\bullet			
Links the presence of the double bond to cis-trans isomerism			

5.

(i) Yes
(ii) No
(iii) Yes
(iv) No
(v) No
(vi) No

Marking Criteria	Marks Allocated
\bullet Correctly determines if cis-trans isomerism is or isn't possible	$1-6$
Total	$\mathbf{6}$

6.

[10 marks]
(a) Position isomer (1)
(f) Position isomer (1)
(b) Same compound (1)
(g) Cis-trans isomer (1)
(c) Structural isomer (1)
(h) Same compound (1)
(d) Structural isomer (1)
(i) Position isomer (1)
(e) Different compounds (1)
(j) Position isomer (1)

Marking Criteria	Marks Allocated
$\bullet \quad$ Correct classification the relationship between each pair of substances	$1-10$
Total	$\mathbf{1 0}$

Concept 2

Properties of Alkanes and Alkenes - Progressive Questions Answers

Boiling Point and Solubility: Q1, Q2, Q3, Q4

1.

[11 marks]
(a) Dispersion forces

Marking Criteria	Marks Allocated
\bullet Circles dispersion forces	1
Total	$\mathbf{1}$

(b) Dispersion forces are the result of electrons moving randomly between atoms in a covalent bond and therefore randomly spending more time on one side of the bond than the other, at different instances. This results in short-lived $\boldsymbol{\delta}^{+}$and δ^{-}charges creating 'temporary dipoles' (1). The presence of these temporary dipoles that continually change location, creates an overall weak electrostatic attraction between the molecules known as dispersion forces (1).

Marking Criteria	Marks Allocated
- Dispersion forces arise from random movement of electrons in covalent bonds. - Temporary dipoles are formed throughout the molecule. - This creates a weak electrostatic attraction between molecules known as dispersion forces.	1-3
Total	3

(c) Numbers should be allocated as follows:

(5) 3-methylhexane (2) Methylbutane (1)	(1) Ethene	(7) Oct-3-ene
(3) Pentane (6) Heptane	(4) 2,3-dimeth	ntane
Marking Criteria		Marks Allocated
- Correctly allocates three of the numbers		1
- Correctly allocates all of the numbers but two		2
- Correctly allocates all of the numbers		3
	Total	3

Points to note: The more branching in a molecule the lower its boiling point when compared to molecules of the same molar mass.
(d) Branching occurs when organic compounds have attached carbon chains (1). When carbon chains are attached to a hydrocarbon they can't pack together as effectively and have a reduced surface area for intermolecular interaction (1). As a result, despite methylbutane having the same molar mass as pentane it has a lower boiling point because its molecules can't pack together as effectively (1) and it therefore has a reduced surface area for intermolecular interaction when compared to the straight chained pentane molecules (1).

Marking Criteria	Marks Allocated
- Correctly defines branching - Branched molecules have a reduced surface area for intermolecular interaction. - Methylbutane is a branched molecule whereas pentane is straightchained. - Methylbutane has a lower boiling point because there is less surface area for intermolecular interaction.	1-4
Total	4

2.

[4 marks]
(a) Butene, methylpentane and hexane all exhibit dispersion force interactions between their molecules (1). Butene has the lowest boiling point because it has a lower molar mass than methylpentane and hexane, and therefore has weaker dispersion forces from having less electrons within its molecules (1). Despite methylpentane having the same molar mass as hexane, methylpentane has a lower boiling point as a result of having more branching (1). With more branching, the methylpentane molecules pack less effectively and therefore have less surface area for intermolecular interaction than the straight chained hexane molecules (1).

| Marking Criteria | Marks Allocated |
| :--- | :--- | :---: |
| • States that all molecules exhibit dispersion forces | |
| - Butene has the lowest boiling point due to weaker dispersion forces from | |
| a lower molar mass and less electrons | |
| - Methylpentane is a branched molecule whereas hexane is straight- | |
| chained. | |
| - Methylpentane has a lower boiling point than hexane because there is | |
| less surface area for intermolecular interaction. | $1-4$ |
| Total | |

(b) Both pentane and pentene exhibit dispersion forces of a similar size between its molecules (1), and water exhibits dispersion forces, dipole-dipole forces and hydrogen bonding between its molecules (1). When pentane or pentene is added to water it only forms weak dispersion forces which do not release enough energy from the solute-solvent attractions to break the solute-solute and solvent-solvent attractions (1). As a result, both pentane and pentene are insoluble (1).

Marking Criteria	Marks Allocated
- Pentane and pentene exhibit dispersion forces between its molecules	
- Water exhibits dispersion forces, dipole-dipole forces and hydrogen	
bonding between its molecules	
- Only dispersion forces are formed between pentane/pentene and water.	
- Not enough energy is released from the solute-solvent attractions to	
break the solute-solute and solvent-solvent attractions, so pentane and	
pentane are insoluble	

Points to note: The strength of dispersion forces is very similar between alkanes and alkenes, so the difference in solubility between alkanes and alkenes of a similar molar mass is negligible.

Hexane and butene exhibit dispersion forces between their molecules, and water exhibits dispersion forces, dipoledipole forces and hydrogen bonding between its molecules (1). When water is added to the hexane the weak dispersion forces formed do not release enough energy to break the solute-solute and solvent-solvent attractions, making it insoluble (1). However, when butene is added to the hexane, moderate sized dispersion forces are formed that release enough energy to break the solute-solute and solvent-solvent attractions, making it soluble (1).

Marking Criteria	Marks Allocated
- \quad Hexane and butane exhibit dispersion forces between its molecules	
- Water exhibits dispersion forces, dipole-dipole forces and hydrogen	
bonding between its molecules	
- The weak dispersion forces formed between hexane and water do not	
release enough energy to break the solute-solute and solvent-solvent	
attractions, so water is insoluble. The moderate dispersion forces formed between butene and hexane release enough energy to break the solute-solute and solvent-solvent attractions, so butane is soluble.	$1-4$

4.

[5 marks]
All of the four compounds stated: octane, pentane, methylbutane and 3-methylheptane exhibit dispersion forces between their molecules (1). Methylbutane and pentane have lower boiling points than 3-methylheptane and octane because they have a lower molar mass and therefore have weaker dispersion forces from having less electrons within its molecules (1). Despite methylbutane and pentane having the same molar mass, methylbutane has a lower boiling point because it has more branching, meaning its molecules pack less effectively and therefore have less surface area for intermolecular interaction than the pentane molecules (1). Despite octane and 3 -methylheptane having the same molar mass, octane has the higher boiling point because 3-methylheptane has more branching meaning its molecules have less surface area for intermolecular interaction (1). Thus the order Neil collects the compounds will start with butane, then pentane, then 3-methylheptane and finally octane (1).

Marking Criteria	Marks Allocated
- All of the compounds exhibit dispersion forces of varying sizes	
- Methylbutane and pentane have a lower boiling point than octane and	
3-methylheptane due to a lower molar mass	
- Methylbutane has the lowest boiling point due to it having more	
branching than pentane	
- Octane has the highest boiling point due to it having less branching than	
3-methylheptane	
- Thus the order collected from start to finish will be: butane, pentane,	
3-methylheptane and then octane.	

Reactions with Alkanes and Alkenes: Q5, Q6, Q7

5.

[6 marks]
(a) Rabea can add bromine water to samples from each of the bottles and observe the addition or substitution reactions that take place (1). From these observations he can determine which bottle contains ethane and which contains ethene (1).

Marking Criteria	Marks Allocated
\bulletBromine water can be added to samples from each of the bottles to observe addition or substitution reactions - The recorded observations can be used to determine which bottle is which	$1-2$
	Total

(b)

Bottle with ethane: No reaction, or if in presence of UV light:

Bottle with ethene:

(c) As predicted from the reactions in part (b), bottle one contains ethane because no reaction occurs for ethane (1), and bottle two contains ethene because an addition reaction takes place (1).

Marking Criteria	Marks Allocated	
\bullet Bottle one contains ethane	$1-2$	
\bullet Bottle two contains ethene	Total	$\mathbf{2}$

6.

[8 marks]
(a) When the hydrogen gas is pumped into the beaker with butane no reaction will take place as there is no UV light present (1), thus it will be observed that a colourless, odourless gas passes through the colourless solution in the beaker (1). In the second beaker containing the but-2-ene the following addition reaction will take place: $\mathrm{CH}_{3} \mathrm{CHCHCH}_{3}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}(1)$, and it will be observed that the colourless, odourless gas is absorbed into the colourless solution (1).

Marking Criteria	Marks Allocated
- No reaction will occur for beaker containing butane - For butane it will be observed that a "colourless gas will pass through colourless solution" - But-2-ene reaction: $\mathrm{CH}_{3} \mathrm{CHCHCH}_{3}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ - For butene it will be observed that "a colourless odourless gas will be absorbed into the colourless solution"	1-4
Total	4

(b) When the chlorine gas is pumped into the beaker with butane the following addition reaction will take place: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_{3} \mathrm{CHClCH}_{2} \mathrm{CH}_{3}(1)$, and it will be observed that "a yellowish-green gas will be slowly absorbed by the colourless solution, but most of the yellow-greenish gas will pass through" (1). In the beaker containing the but-2-ene the following addition reaction will take place: $\mathrm{CH}_{3} \mathbf{C H C H C H} \mathbf{H}_{3}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow$ $\mathrm{CH}_{3} \mathrm{CHClCHClCH}_{3}(1)$, and it will be observed that "a yellowish-green gas will be absorbed by the colourless solution to produce a colourless solution" (1).

Marking Criteria	Marks Allocated
- Butane reaction: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_{3} \mathrm{CHClCH}_{2} \mathrm{CH}_{3}$ - For butane it will be observed that a "yellowish-green as will be slowly absorbed by the colourless solution." - But-2-ene reaction: $\mathrm{CH}_{3} \mathrm{CHCHCH}_{3}+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{CHClCHClCH}_{3}$ - For butene it will be observed that "a yellowish-green gas will be absorbed into the colourless solution"	1-4
Total	4

7.

(a) $\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ (1)
(b) $\mathrm{C}_{4} \mathrm{H}_{8(\mathrm{~g})}+4 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{CO}_{(g)}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
(c) $\mathbf{2 C} \mathbf{C}_{\mathbf{8}} \mathrm{H}_{(\mathrm{g})}+\mathbf{1 7 O}_{\mathbf{2 (g)}} \rightarrow 16 \mathrm{CO}_{(g)}+18 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ (1)
(d) $2 \mathrm{C}_{7} \mathrm{H}_{14(\mathrm{~g})}+\mathbf{2 1 O}_{2(\mathrm{~g})} \rightarrow \mathbf{1 4 C O}_{2(\mathrm{~g})}+14 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
(e) $\mathbf{2 C} \mathbf{C}_{\mathbf{5}} \mathrm{H}_{\mathbf{(g)}}+\mathbf{1 1 O}_{2(g)} \rightarrow 10 \mathrm{CO}_{(g)}+12 \mathrm{H}_{2} \mathrm{O}_{(g)}$ (1)

Marking Criteria	Marks Allocated
\bullet Writes correct complete/incomplete combustion equation	$1-5$

Problem Set 10 - Organic Chemistry BTG Repetitive Questions

Concept 1

Alkanes and Alkenes - Progressive Questions Answers

IUPAC Naming of Alkanes and Alkenes: 1.11, 1.21
1.1
[12 marks]

(a) Propene (1)	(b) Pentane (1)	(c) 1-Bromoethene (1)
(d) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$ 1-bromopropane (1)	(e) cis-1-chlorobut-2-ene (1)	(f) 1-iodo-3,3-dimethylbutane (1)
(g) 3-chloropropene (1)	 5-chloro-2-methylheptane (1)	(i) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CHBr}-\mathrm{CH}_{3}$ 2-bromobutane (1)
(j) 4,4-diflurobut-1-ene (1)	(k) 2,2-dimethylpropane	(I) 3,3-dichloro-4-methylheptane (1)

(b)

(1)
(c)

(e)

(1)
(g)

(f)

(h)

(1)
(i)

[11 marks]
(a) An isomer is a compound with the same molecular formula but a different structural formula (1).

Marking Criteria	Marks Allocated	
\bullet Correctly defines isomer	1	
	Total	$\mathbf{1}$

(b) (i)

Butane (1)

methylpropane (1)
(ii)

Propane (1)
(iii)

1-bromo-1-methylethene

1) cis-1-bromo-2-methylethene (1)
(1)

(iv)

1-chlorobutane (1)

2-chlorobutane (1)
1-chloromethylpropane
(1)

2-chloromethylpropane (1)
(a) Same compound
(1)
(f) Different compounds
(1)
(b) Cis-trans isomer (1)
(g) Same compound (1)
(c) Structural isomer (1)
(h) Structural isomer (1)
(d) Structural isomer (1)
(i) Structural isomer (1)
(e) Cis-trans isomer (1)
(j) Structural isomer (1)

Concept 2

Properties of Alkanes and Alkenes - Progressive Questions Answers

Boiling Point and Solubility: 2.11, 2.21, 2.41
2.11
[11 marks]
(a) Dispersion forces (1)

Marking Criteria	Marks Allocated
\bullet Correctly dispersion forces	
Total	$\mathbf{1}$

(b)

Dispersion forces

(1)

Hydrogen bonding

Dipole-dipole forces are intermolecular forces that arise from the attraction between oppositely charged dipoles between molecules, as shown in the attraction between the $\boldsymbol{\delta}^{+}$on the \boldsymbol{C} atom in tetrafluoromethane and the δ^{-}on the O atom in water (1). Hydrogen bonds are a significantly stronger type of dipole-dipole force that arise between two molecules when one molecule has a lone pair of electrons from a $\boldsymbol{F}, \boldsymbol{O}$ or \boldsymbol{N} atom and the other molecule has a \boldsymbol{H} atom bonded to a $\boldsymbol{F}, \boldsymbol{O}$ or \boldsymbol{N} atom (1). This is shown in the attraction of the lone pair electrons of the \boldsymbol{F} atom in tetrafluoromethane and the $\boldsymbol{\delta}^{+}$on the \boldsymbol{H} atom in water.

Marking Criteria	Marks Allocated
- Correct diagram showing dipole-dipole forces.	
- Correct diagram showing hydrogen bonding.	
- Dipole-dipole forces are the attraction between oppositely charged	
dipoles between molecules.	
- Hydrogen bonds are the attraction between the lone pair of electrons	
from a F, O or N atom of one molecule and the H atom bonded to a F, O	
or N atom of another molecule.	$1-4$
	Total

(c)
(5) Hexane
(3) Butane
(2) Methylpropane
(6) 2-methylheptane
(1) Methane
(7) Octane
(4) 2,3-dimethylbutane

Marking Criteria	Marks Allocated	
\bullet Correctly allocates three of the numbers	1	
\bullet Correctly allocates all of the numbers but two	2	
\bullet Correctly allocates all of the numbers		3
	Total	$\mathbf{3}$

(d) Both octane and tetrabromomethane are non-polar molecules and therefore only exhibit dispersion forces between their molecules (1). Despite being a smaller molecule, tetrabromomethane has a higher boiling point because it has a higher molar mass ($331.61 \mathrm{~g} \mathrm{~mol}^{-1}$ vs $112.208 \mathrm{~g} \mathrm{~mol}^{-1}$) (1). With a higher molar mass, tetrabromomethane has stronger dispersion forces because it has more electrons within its molecules to create temporary dipoles (1).

Marking Criteria	Marks Allocated
• Both octane and tetrabromomethane exhibit dispersion forces.	
- Tetrabromomethane has a higher molar mass and therefore stronger	
dispersion forces. - A higher molar mass means more electrons to create temporary dipoles, thus giving tetrabromomethane a higher boiling point.	$1-3$
	Total

All of the four compounds used: hexane, oct-2-ene, 3-methylpentane and 1,2-difluorohexane exhibit dispersion forces between their molecules (1). Despite having the same molar mass as hexane, 3 -methylpentane has the lowest boiling point because it has more branching between its molecules, meaning its molecules pack less effectively and therefore have less surface area for intermolecular interaction (1). Hexane has a lower boiling point than oct-2-ene because it has a lower molar mass and therefore have weaker dispersion forces from having less electrons within its molecules to form temporary dipoles (1). Finally 1,2-difluorohexane is a polar molecule that exhibits dipole-dipole forces between its molecules and as a result has a higher boiling point than oct-2-ene because the sum of its intermolecular forces is greater (1). Thus the order of boiling points from lowest to highest will be: 3-methylpentane, hexane, oct-2-ene and then 1,2-difluorohexane (1).

Marking Criteria	Marks Allocated
- All of the compounds exhibit dispersion forces of varying sizes.	
- 3-methylpentane has the lowest boiling point due to branching which	
gives less surface area for intermolecular interaction.	
- Hexane has a lower boiling point than oct-2-ene from having a lower	
molar mass and therefore less electrons to form temporary dipoles	
-1,2-difluorohexane has the highest boiling point from having dipole- dipole forces between this molecules The boiling point order will be: 3-methylpentane, hexane, oct-2-ene and then 1,2-difluorohexane.	

2.41
[10 marks]
(a) Both hexane and octane exhibit dispersion forces of a similar size between its molecules (1), and water exhibits dispersion forces, dipole-dipole forces and hydrogen bonding between its molecules (1). When hexane or octane are added to water they form weak dispersion forces which do not release enough energy to break the solute-solute and solvent-solvent attractions (1). As a result, both hexane and octane are insoluble (1).

Marking Criteria	Marks Allocated	
- \quad Hexane and octane exhibit dispersion forces between its molecules		
- Water exhibits dispersion forces, dipole-dipole forces and hydrogen		
bonding between its molecules		
-Only weak dispersion forces are formed between hexane/octane and water.	$1-4$	
-Not enough energy is released from the solute-solvent attractions to break the solute-solute and solvent-solvent attractions, so hexane and octane are insoluble		
	Total	$\mathbf{4}$

(b) Ethane exhibits dispersion forces between its molecules (1), pentane exhibits dispersion forces between its molecules (1). When ethane is added to the pentane, moderate sized dispersion forces are formed that release enough energy to break the solute-solute and solvent-solvent attractions, making it soluble (1).

Marking Criteria	Marks Allocated
\bullet Ethane and pentane exhibit dispersion forces between their molecules	
-Moderate sized dispersion forces are formed between ethane and pentane that release enough energy to break the solute-solute and solvent-solvent attractions, so ethane is soluble in pentane	$1-4$
	Total

(c) Heptane exhibits dispersion forces between its molecules, water exhibits dispersion forces, dipole-dipole forces and hydrogen bonding between its molecules (1), and fluoroethane exhibits dispersion forces and dipole-dipole forces between its molecules (1). When heptane is added to fluoroethane, only weak dispersion forces which do not release enough energy to break the solute-solute and solvent-solvent attractions (1). However, when water is added dispersion forces, dipole-dipole forces and hydrogen bonds are formed which release enough energy to break the solute-solute and solvent-solvent attractions. As a result, heptane is insoluble and water is soluble in fluoroethane (1).

Problem Set 11 - Organic Functional Groups Progressive Questions

Concept 1

Functional Groups - Progressive Questions Answers

IUPAC Naming of Functional Groups: Q1, Q2, Q3, Q4, Q5, Q6
1.

(a) Ethanol (1)	(b)	(c) Butanone (1)
		(f)
(g)	(h) 3-chloro-3-iodopentanal (1)	(i) 2-methyl propan-2-ol (1)

2.

[10 marks]
(a)

(b)

(1)
(c)

(1)
(d)

(1)
(e)

(1)
(f)

(1)
(g)

(h)

(1)
(i) H

(1)
3.
[10 marks]

(a) 5,5,5-tribromo-petan-3-one (1)	(b) $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-\mathrm{OH}$ 2-methylpropan-1-ol (1)	(c) methyl propanoate (1)
(d) 3-chloro-3-iodo-2,2-dimethyl propanoic acid (1)	(e) 2-methyl-2-propyl-pentan-1-amine	(f) 4,4-dichloro-5-iodopentanamide (1)
(g) Ethyl Butanoate (1)	 3-chloro-5-methyl-heptanal (1)	

Student	Condensed Compound	Student's Guess	Actual Name	Progresses to next stage (V or X)
Janet	$\mathrm{CH}_{3} \mathrm{CHO}$	Ethanal	Ethanal (1)	\checkmark
	$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$	Propan-2-ol	Propan-2-ol (1)	
Sarah	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	Pentanoic Acid	Pentanoic Acid (1)	\checkmark
	$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$	Butanone	Butanone (1)	
Jamie	$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Propyl ethanoate	Pentanone (1)	X
	$\mathrm{CHOOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Butanoic acid	Methyl Butanoate (1)	
Alexa	$\mathrm{CHI}_{2} \mathrm{CHBrCH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$	4-bromo-5,5-diiodopentanal	4-bromo-5,5-diiodopentanal (1)	\checkmark
	$\mathrm{CH}_{3} \mathrm{CHICH}\left(\mathrm{CH}_{3}\right) \mathrm{CONH}_{2}$	3-iodo-2-methylbutanamide	3-iodo-2-methylbutanamide (1)	
Dylan	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{OH}$	Butan-1-ol	Propan-2-ol (1)	X
	$\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}$	3-ethyl-butan-2-amine	$\begin{gathered} \text { 3-methyl-pentan-2- } \\ \text { amine (1) } \\ \hline \end{gathered}$	

5.

[6 marks]

Alexa: 4-ethyl-2,3,5-trimethylheptane
(b)

Sarah: 3-ethyl-5,6-difluoro-4-methylhexene

Alexa's guess of 4-ethyl-2,3,5-trimethylheptane is correct, however Sarah's guess is incorrect and it should actually be: 4-ethyl-1,2-difluoro-3-methylhex-3-ene (1). Therefore Alexa will progress to the next stage and Sarah will not (1).

Marking Criteria	Marks Allocated	
\bullet States Alexa is correct and Sarah is incorrect		
\bulletGives the correct name for Sarah of: 4-ethyl-1,2-difluoro-3-methylhex-3- ene	$1-2$	
	Total	$\mathbf{2}$

Points to note: If the double bond number is the same both ways, the numbering will be based on the substituent group that gives the lowest possible number. Therefore in molecule (b) this case it is correct to count from right to left, rather than left to right as has been done in Sarah's guess.
6.

Name of Organic Compound	Alexa's Guess $(\checkmark$ or X$)$	Janet's Guess $(\checkmark$ or X$)$	Correct Person (Alexa or Janet)
2-methylpent-3-ene	\checkmark	X	Janet (1)
cis-1,1-dichloroprop-1-ene	X	\checkmark	Alexa (1)
2,3-difluoro-3-ethylpentanal	X	\checkmark	Janet (1)
1,3,3-tribromopropan-3-ol	X	X	X
2-methylbutane	X	Both (1)	
methyl butanoate	X	X	Alexa (1)
1-chloroethanamide	Alexa (1)		
3-ethylbutan-2-one	Both (1)		

\therefore Alexa will win and will remain in her trio (1)
Points to note: The correct names are as follows:

- Compound 1 name is: cis or trans-4-methylpent-2-ene
- Compound 2 name is: 1,1-dichloroprop-1-ene
- Compound 3 name is: 3,4-difluoro-3-ethylpentanal
- Compound 4 name is: 1,1,3-tribromopropan-1-ol
- Compound 5 name is: methylbutane
- Compound 6 name is correct
- Compound 8 name is: 2-chloroethanamide
- Compound 9 name is: 3-methylpentan-2-one

7.

(a) CHBrCHBr can exhibit cis-trans isomerism as there is a bromine group on either side of the double bond (1).
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$ cannot exhibit cis-trans isomerism since there is no double bond (1).
(c) $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CHCH}_{3}$ cannot exhibit cis-trans isomerism since it has two methyl groups on the same side of the double bond, so it will be identical on that side irrespective of the rotation (1).
(d) $\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{3}$ cannot exhibit cis-trans isomerism since there are not substituent groups on both sides of the double bond (1) (or that there are two hydrogen atoms on one side of the double bond that will be the same irrespective of their rotation).
(a) $\mathrm{CHClCHCH}_{2} \mathrm{CH}_{3}$ can exhibit cis-trans isomerism between the chlorine and ethyl groups on either side of the double bond (it doesn't matter that they aren't the same group) (1).
(e) $\mathrm{CH}_{3} \mathrm{COOCHCHOH}$ cannot exhibit cis-trans isomerism since it doesn't have a double bond in a location where it is bonded to carbons on either side (1).
(f) $\mathrm{CH}_{3} \mathrm{CHCHCl}$ can exhibit cis-trans isomerism from the methyl group on one side and chlorine group on the other side of the double bond (it doesn't matter that they aren't the same group) (1).

Marking Criteria	Marks Allocated
\bulletCorrectly states whether cis-trans isomerism can or cannot be exhibited and provides an appropriate reason	$1-7$
	$\mathbf{7 o t a l}$

Points to note: Draw out each of the compounds, check that they are valid and that they have the same number of each atoms.
9.
(a) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ has the two isomers shown below.

Isomers of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	
 Propanol (1)	 Propan-2-ol (1)

(b) $C_{4} H_{10} O$ has the four isomers shown below.

Isomers of $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$		
	 Butan-2-ol (1)	 2-methyl propanol (1)
 2-methyl propan-2-ol (1)		

(c) $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ has the eight isomers shown below.

Isomers of $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$		
 3-methylbutan-2-ol (1)	 2-methylbutan-2-ol (1)	 3-methylbutanol (1)
	 2,2-dimethylpropan-1-ol (1)	

(d) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ has the two isomers shown below.

Isomers of $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	
 Propanal (1)	

(e) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ has the three isomers shown below.

Isomers of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$		
		 2-methylpropanal (1)

(f) $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ has the seven isomers shown below.

Isomers of $\mathrm{C}_{\mathbf{5}} \mathrm{H}_{10} \mathrm{O}$		
 3-methylbutan-2-one (1)		
 2,2-dimethylpropanal (1)		

(g) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$ has the three isomers shown below.

Isomers of $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$		
 Propanoic Acid (1)		 Methyl Ethanoate (1)

(h) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ has the five isomers shown below.
Isomers of $\boldsymbol{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
(i) $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$ has the twelve isomers shown below.

Isomers of $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$		
 Pentanoic Acid (1)	 2-methyl Butanoic Acid (1)	 3-methyl Butanoic Acid (1)
 2,2-dimethyl Propanoic Acid (1)		
 Methyl-2-methyl propanoate (1)		
 Propyl Ethanoate (1)		 Methyl-2-Propyl methanoate (1)
	 dimethyl-2,2- ethyl Methanoate (1)	 4-methyl-propyl Methanoate (1)

Concept 2

Functional Group Properties - Progressive Questions Answers

Intermolecular Forces: Q1, Q2

1.

Substance 1	Substance 2	Types of Intermolecular Forces Exhibited
		Ion-Dipole Forces Hydrogen Bonds Dipole-Dipole Forces Dispersion Forces
$\mathrm{Na}: \stackrel{\mathrm{Cl}}{\mathrm{l}}$:		Ion-Dipole Forces Hydrogen Bonds Dipole-Dipole Forces Dispersion Forces
		Ion-Dipole Forces Hydrogen Bonds Dipole-Dipole Forces Dispersion Forces
	$\mathrm{H}-\mathrm{Cl}$	Ion-Dipole Forces Hydrogen Bonds Dipole-Dipole Forces Dispersion Forces

Marking Criteria	Marks Allocated
\bullet Correct intermolecular forces circled	$1-4$
Total	$\mathbf{4}$

2.

[10 marks]
(a) Dispersion forces arise from electrons moving randomly between atoms and therefore randomly spending more time on one side of the molecule than the other, at different instances (1). This results in short-lived $\boldsymbol{\delta}^{+}$ and δ^{-}charges creating 'temporary dipoles' that from the dispersion force attractions. As the molar mass of a molecule increases the number of electrons increase and as a result the size of the temporary dipoles increases, thus increasing the strength of the dispersion forces (1).

Marking Criteria	Marks Allocated
-Dispersion forces arise from the random movement of electrons and randomly spending more time on one side of the molecule	
- This creates short-lived temporary dipoles (δ^{+}and δ^{-}charges)	
- As molar mass increases, the number of electrons increases which	
increases the size of the temporary dipoles which increases the strength	
of the dispersion forces	

(b) Yes, dispersion forces are present between all molecules (1). This is because all molecules have electrons that move randomly and can therefore form temporary dipoles that create the dispersion force attractions (1).

Marking Criteria	Marks Allocated
- Dispersion forces are formed between all molecules	$1-2$
- All molecules have electrons that form the temporary dipoles needed	$\mathbf{2}$
Total	$\mathbf{2}$

(c) The order of strength of dispersion forces from weakest to strongest will be propane, dimethylpropane and then pentane (1). Dimethylpropane and pentane have a stronger dispersion forces than propane because they have a higher molar mass and therefore more electrons to form stronger dispersion forces (1). Pentane has a higher boiling point than dimethylpropane because dimethylpropane has more branching meaning it has less surface area for intermolecular interaction (1).

Marking Criteria	Marks Allocated		
• Order from weakest to strongest will be propane, dimethylpropane and			
then pentane		$\quad 1$	-Propane has the lowest boiling point because it has the least electrons to form dispersion forces
:---			
-Dimethylpropane has a lower boiling point than pentane due to a reduced surface area for intermolecular interaction from branching			
Total			

Properties of Functional Groups: Q3, Q4, Q5, Q6, Q7, Q8, Q9
3.

Name of Substance	Rank
2,2-dimethylpropane	1
Pentanoic acid	7
Pent-1-ene	2
Pentanamine	5

Ethyl ethanoate	4
Pentan-1-ol	6
Hexane	3
Pentanamide	8

Points to note: The boiling point is dependent on the sum of intermolecular forces. So consider the intermolecular forces formed between each of the compounds.

Marking Criteria	Marks Allocated		
\bullet Half mark for each correctly ranked compound	$1-4$		
4			

4.

(a) The first and main reason that ethanamide has a higher boiling point than ethanamine is because ethanamide is capable of forming more hydrogen bonds than ethanamine because it has the extra two lone pair electrons on the oxygen atom (1). The second reason is that ethanamide has a greater molar mass than ethanamine ($59.07 \mathrm{~g} \mathrm{~mol}^{-1}$ vs $45.08 \mathrm{~g} \mathrm{~mol}^{-1}$) and therefore has more electrons and stronger dispersion forces (1). As a result, ethanamide has a higher boiling point because the sum of the strength of its intermolecular forces is greater than for ethanamine (1).

Marking Criteria	Marks Allocated
\bullet Ethanamide can form my hydrogen bonds than ethanamine	
\bullet Ethanamide has stronger dispersion forces from having a higher molar	
mass and therefore more electrons to form temporary dipoles	
- The sum of strength of intermolecular forces in ethanamide is greater	
than in ethanamine, thus giving it a higher boiling point	

(b) Ethanamide and decanamine both exhibit the same intermolecular forces: dispersion forces, dipole-dipole forces and hydrogen bonding (1). Ethanamide has a higher boiling point because it is capable of forming more hydrogen bonds than decanamine because it has the extra two lone pair electrons on the oxygen atom (1). However, decanamine also has a similar boiling point because it has a much higher molar mass than ethanamide because it has a higher molar mass and therefore has more electrons to form stronger dispersion forces (1). As a result, the sum of the strength of intermolecular forces in each molecule balances out to be very similar, giving them very similar boiling points (1).

Marking Criteria	Marks Allocated
\bullet	Both molecules exhibit the same intermolecular forces
\bullet	Ethanamide can form more hydrogen bonds than decanamine
\bullet	Decanamine has stronger dispersion forces from having a higher molar
mass	
The sum of the strength of intermolecular forces balances out to be	
similar, giving the compounds similar boiling points	

5.

(a)

Ethanol

Ethanamine

Point to note: These are just examples of a hydrogen bonding diagram that could be drawn (you don't necessarily need to draw all three hydrogen bonds for each molecule).

Marking Criteria	Marks Allocated
\bullet Draws correct structure for ethanol and ethanamine	$1-2$
\bullet Draws appropriate hydrogen bonds for ethanol and ethanmine	$1-2$
Total	$\mathbf{4}$

(b) Whilst both ethanol and ethanamine are capable of forming hydrogen bonds, the hydrogen capable of hydrogen bonding in ethanol is attached to an oxygen atom and the hydrogen in ethanamine is attached to a nitrogen atom (1). Oxygen is a more electronegative element than nitrogen and as a result a stronger positive partial charge is created on the hydrogen of the ethanol, resulting in stronger hydrogen bonds and a higher boiling point (1).

Marking Criteria	Marks Allocated
• The hydrogen atom capable of hydrogen bonding is attached to an	
oxygen atom in ethanol and a nitrogen atom in ethanamine. Oxygen is a more electronegative element and as a result forms a stronger positive partial charge on the H atom resulting in stronger hydrogen bonds and a higher boiling point	$1-2$
	Total

6.

[4 marks]
Butanoic acid and ethyl ethanoate both exhibit dispersion forces due to the presence of electrons, and these are of a similar strength because both molecules have the same molar mass (1). Both molecules are also polar and therefore exhibit dipole-dipole forces (1). However, only butanoic acid has an $\boldsymbol{O H}$ group that can form hydrogen bonds with another butanoic acid molecule (1), and as a result butanoic acid has a higher boiling point because it has the strongest sum of intermolecular forces (1).

Marking Criteria	Marks Allocated
- Butanoic acid and ethyl ethanoate exhibit dispersion forces of a similar strength - Butanoic acid and ethyl ethanoate exhibit dipole-dipole forces of a similar strength - Only butanoic acid exhibits hydrogen bonds between its molecules - Butanoic acid has a higher boiling point because the sum of the strength of its intermolecular forces is greater	1-4
Total	4

Name of Substance	Rank
Propan-1-ol	$\mathbf{3}$
Methyl propanoate	$\mathbf{5}$
Propanal	$\mathbf{4}$
Propanoic Acid	$\mathbf{2}$
Potassium Nitrate	$\mathbf{1}$
Propane	

Point to note: Despite esters and aldehydes having similar solubilities, methyl propanoate has a lower solubility than propanal because it has a higher molar mass and therefore stronger dispersion forces.

Marking Criteria	Marks Allocated			
\bullet Half mark for each correctly ranked compound	$1-3$			
Total				$\mathbf{3}$

8.

(a) Ethanoic acid exhibits dispersion forces, dipole-dipole forces and hydrogen bonding between its molecules (1).

Marking Criteria	Marks Allocated
\bullet Dispersion forces, dipole-dipole forces and hydrogen bonding	1
Total	$\mathbf{1}$

(b) Water exhibits dispersion forces, dipole-dipole forces and hydrogen bonding between its molecules (1).

| Marking Criteria | Marks Allocated |
| :---: | :---: | :---: |
| $\bullet \quad$ Dispersion forces, dipole-dipole forces and hydrogen bonding | 1 |
| Total | $\mathbf{1}$ |

(c) When ethanoic acid is added to water they form dispersion forces, dipole-dipole forces and hydrogen bonding between molecules (1).

Marking Criteria	Marks Allocated
\bullet Dispersion forces, dipole-dipole forces and hydrogen bonding	1
Total	1

(d) When ethanoic acid is added to water enough energy will be released from the solute-solvent attractions to break the existing solute-solute and solvent-solvent attractions (1). As a result, ethanoic acid will be soluble in water (1).

Marking Criteria	Marks Allocated
\bullet Sufficient energy will be released from the solute-solvent attractions to	
break the solute-solute and solvent-solvent attractions	
\bullet Thus ethanoic acid is soluble in water	$1-2$
	Total

Both butan-1-ol and butanamide exhibit dispersion forces, dipole-dipole forces and hydrogen bonding between their molecules (1). Water also exhibits dispersion forces, dipole-dipole forces and hydrogen bonding betweens its molecules (1). When butan-1-ol or butanamide are added to water they will form dispersion forces, dipole-dipole forces and hydrogen bonding between the molecules (1). These interactions release enough energy from the solutesolvent attractions to break the existing solute-solute and solvent-solvent attractions making them both soluble in water (1). However, butanamide is more soluble than butan-1-ol because it can form more hydrogen bonds per molecule with water (1).

Marking Criteria	Marks Allocated
- Butan-1-ol and butanamide both exhibit dispersion forces, dipole-dipole forces and hydrogen bonding between their molecules - Water exhibits dispersion forces, dipole-dipole forces and hydrogen bonding between its molecules - When added to water both compounds form dispersion forces, dipoledipole forces and hydrogen bonding between the molecules - For both compounds sufficient energy will be from the solute-solvent attractions to break the solute-solute and solvent-solvent attractions making them soluble - Butanamide is more soluble than butan-1-ol because it can form more hydrogen bonds per molecule with water	$1-5$
Total	5

10.

[5 marks]

(2)

Calcium chloride is an ionic compound that forms strong ionic bonds between its atoms in a lattice arrangement (1). When calcium chloride is added to water, it forms strong ion-dipole forces between the molecules (1). This interaction releases enough energy from the solute-solvent attractions to break the existing solute-solute and solvent-solvent attractions making them both soluble in water (1).

Marking Criteria	Marks Allocated	
\bullet	Diagram has correct structure of calcium chloride	
\bullet	Diagram shows ion-dipole forces formed between calcium chloride and water	$1-2$
•	Calcium chloride forms strong ionic bonds between its atoms	
-	When added to water it forms strong ion dipole forces	
-	Sufficient energy will be released from the solute-solvent attractions to break the solute-solute and solvent-solvent attractions making calcium chloride soluble in water	$1-3$
	$\mathbf{T o t a l}$	

Problem Set 11 - Organic Functional Groups Repetitive Questions

Concept 1

Functional Groups - Repetitive Questions Answers
[15 marks]

(a) 3-bromobutan-2-ol (1)	 Pentan-2-ol (2)	(c) Propanamide (1)
(d) Propanoic Acid (1)	(e) 1-chloropropanone (1)	(f) 2,2-dimethyl butanoic acid (1)
(g) 3-chlorobutanamide (1)	 4-bromopent-2-ene (1)	
(j) 1-chloro-4-ethylhexan-2-one (1)	(k) Pentyl hexanoate (1)	(I) 3-chloro-5-methylheptanoic acid (1)
	(n) 2,3,3-trimethylpetanamide (1)	(o) 1,1,4-triiodopentan-2-amine (1)

Structural Formula	Condensed Formula	IUPAC Name of Compound
	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}(\mathbf{1})$	methyl propanoate (1)
	$\mathrm{CBr}_{2} \mathrm{O}$	1,1 dibromomethanal (1)
	$\mathrm{CHFICOCCl}_{3}$	1,1,1-trichloro-3-fluro-3-iodo- propanone (1)
	$\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}$	
	$\begin{gather*} \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \\ \mathrm{CONH}_{2} \tag{1} \end{gather*}$	2-ethyl-3-methylbutanamide

 3-bromobutan-2-amine (1)	 2,3-dimethylbut-1-ene (1)	 2-ethylbutanal (1)
(d) cis-1,2,3,4-tetrachlorobut-2-ene (1)	(e) Butyl	 noate (1)
(f) Sodium Ethanoate (1)	(g) Dimethylpropanoic acid (1)	(h) Propanone (1)
(i) 2,2,4,4-tetramethylpentan-3-one (1)	(j) 1,2-dichloroethanamine (1)	

1.41
[10 marks]
(a) 1-chloro-1-fluro-methanamine (1)
(b) 2-bromo-1,1-dichloro-3-ethylpentane (1)
(c) Fluromethanamide (1)
(d) Ethyl Ethanoate (1)
(e) Methanoic Acid (1)
(f) Ethan-1,2-diol (1)

Name of organic compound:	Correct	Incorrect	
	trans-2,2-difluroethene		X

Reason(s) if naming is incorrect: There is no cis-trans isomerism since the fluorine atoms are on the same side of the double bond, meaning the molecule will always be the same irrespective of the rotation. The numbering of the fluorine atoms should also be 1,1 not 2,2 (1). Thus correct name should be 1,1-difluoroethene. (1)

4,7-dichloroheptan-2-ol
(1)

Reason(s) if naming is incorrect:
1-ethyl-2-fluoropentane

Reason(s) if naming is incorrect: Having an ethyl group on carbon 1 would result in the chain being extended by two carbons. The correct name should be 4-fluroheptane. (1)
2-methylhex-4-ene $\quad \mathrm{X}$

Reason(s) if naming is incorrect: The lowest numbering should be prioritised for the functional group (1). The correct name would be 4-methyl hex-2-ene. (1)
1,1-difluromethanamide $\quad x$

Reason(s) if naming is incorrect: There would be more than four bonds attached to carbon one meaning it is not possible. (1) This compound does not have a correct name as it doesn't exist (1)
2-methyl-3,3-dichlorobutanal

Reason(s) if naming is incorrect: The substituents must go in alphabetical order. The correct name should therefore be 3,3-dichloro-2-methylbutanal. (1)

Isomerism: 1.81, 1.82, 1.91, 1.92
1.81
[6 marks]
(a) CHFCHF can exhibit cis-trans isomerism between the fluorine groups on either side of the double bond (1).
(b) $\mathrm{CH}_{3} \mathrm{CHCH}_{2}$ cannot exhibit cis-trans isomerism since there are two hydrogen atoms on one side of the double bond that will be the same irrespective of their rotation. (1)
(c) $\mathrm{CH}_{2} \mathrm{ClCHCHCH} 2 \mathrm{Cl}$ can exhibit cis-trans isomerism between the $\mathrm{CH}_{2} \mathrm{Cl}$ groups on either side of the double bond (1).
(d) $\mathrm{CH}_{2} \mathrm{BrCH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ cannot exhibit cis-trans isomerism since there is no double bond (1).
(e) $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$ cannot exhibit cis-trans isomerism since there is no double bond (1).
(f) CHFCHBr can exhibit cis-trans isomerism between the fluorine and bromine atoms on either side of the double bond (it doesn't matter that they aren't the same group) (1).

Marking Criteria		Marks Allocated
\bullet Correctly explains whether cis-trans isomerism can or cannot be	$1-6$	
exhibited and provides an appropriate reason	Total	$\mathbf{6}$

(a) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$ has the two isomers shown below.

Isomers of $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$	
 1-chloropropane (1)	 2-chloropropane (1)

(b) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ has the two isomers shown below.

| Isomers of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ | |
| :---: | :---: | :---: | :---: |
| $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{OH}$ | H |
| $\mathrm{H} \quad \mathrm{H} \quad \mathrm{H}$ | |
| Propan-1-ol (1) | |

(c) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ has the three isomers shown below.

Isomers of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$		
	 Ethyl Ethanoate (1)	
 Butanoic acid (1)		

(d) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ has the two isomers shown below.

Isomers of $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	
 Propanal (1)	 Propanone (1)

(e) $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{Cl}$ has the two isomers shown below.

Isomers of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}$		
 2-chloropropene (1)	 3-chloropropene (1)	 trans-1-chloropropene (1)
 cis-1-chloropropene (1)		

1.92
[21 marks]
(a) $C_{5} H_{10}$ has the five isomers shown below.

Isomers of $\mathrm{C}_{5} \mathrm{H}_{10}$

		 2-methylbut-1-ene (1)
 2-methylbut-2-ene (1)	 3-methylbut-1-ene (1)	

(b) $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Br}$ has the four isomers shown below.

(c) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2}$ has the three isomers shown below.

Isomers of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2}$

(d) $C_{4} H_{8}$ has the four isomers shown below.
Isomers of $\mathrm{C}_{4} \mathrm{H}_{8}$
(e) $C_{4} H_{9} F$ has the four isomers shown below.

Isomers of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~F}$

2-fluro-2-methylpropane (1)

1-fluro-2-methylbutane (1)

Properties of Functional Groups - Repetitive Questions Answers

Intermolecular Forces: Qs 2.1, 2.11, 2.21, 2.22
2.1
[8 marks]

Substance 1	Substance 2	Types of Intermolecular Forces Exhibited
		Ion-Dipole Forces Hydrogen Bonds Dipole-Dipole Forces Dispersion Forces
		Ion-Dipole Forces Hydrogen Bonds Dipole-Dipole Forces Dispersion Forces
	$: \mathrm{N} \equiv \mathrm{C}-\mathrm{H}$	Ion-Dipole Forces Hydrogen Bonds Dipole-Dipole Forces Dispersion Forces

Marking Criteria	Marks Allocated	
\bullet Correct intermolecular forces circled	$1-4$	
	Total	$\mathbf{4}$

2.11
(a)

(2)

Marking Criteria	Marks Allocated	
\bullet Correct structure of molecules		$1-2$
• Appropriate dipole-dipole forces drawn	Total	$\mathbf{2}$

(b)

Marking Criteria	Marks Allocated
- Correct structure of molecules	$1-2$
- Appropriate hydrogen bonds drawn	

(c) Methanal is a polar molecule that exhibits dispersion forces and dipole forces between its molecules (1). Water also exhibits dispersion forces, dipole-dipole forces and hydrogen bonding between its molecules (1). Hexane is a non-polar molecule that exhibits moderately strong dispersion forces between its molecules (1). When methanal is added to water it forms dispersion forces, dipole-dipole forces and hydrogen bonding and these interactions release enough energy to break the solute-solute and solvent-solvent attractions, thus making methanal soluble in water (1). However, when methanal is added to hexane it only forms weak dispersion forces which do not release enough energy to break the solute-solute and solvent-solvent attractions, thus making methanal insoluble in hexane (1).

Marking Criteria	Marks Allocated
- Methanal exhibits dispersion forces and dipole-dipole forces between its molecules - Water exhibits dispersion forces, dipole-dipole forces and hydrogen bonding between its molecules - Hexane exhibits moderately strong dispersion forces - Methanal added to water forms dispersion forces, dipole-dipole forces and hydrogen bonding which releases enough to break the solute-solute and solvent-solvent attractions, making it soluble. - Methanal added to hexane only forms weak dispersion forces which does not release enough energy to break the solute-solute and solvent-solvent attractions, making it insoluble.	$1-5$
Total	5

Hydrogen bond diagram	Correct (V)	Incorrect (X)
		X (1)
Reason(s) if naming is incorrect: This is an ion-dipole force interaction not a hydrogen bond (1).		
	\checkmark (1)	
Reason(s) if naming is incorrect:		
	\checkmark (1)	
Reason(s) if naming is incorrect:		
		X (1)
Reason(s) if naming is incorrect: A \boldsymbol{H} atom attached to a carbon atom cannot form a hydrogen bond with another \boldsymbol{H} atom . It has to be between a lone pair of electrons and a \boldsymbol{H} atom attached to a $\boldsymbol{O}, \boldsymbol{N}$ or \boldsymbol{F} atom (1)		

Marking Criteria		Marks Allocated
\bullet	Correctly states correct or incorrect	$1-4$
\bullet	Provides appropriate reasoning for incorrect hydrogen bonds	
		Total

2.22
[3 marks]
Ion dipole forces is the attraction between the partial charge of a polar molecule and the charge of an ion (1), whereas a hydrogen bond is the attraction between a lone pair of electrons and the strong positive partial charge of a \boldsymbol{H} atom attached to a $\boldsymbol{O}, \boldsymbol{N}$ or \boldsymbol{F} atom (1). The charge of an ion is much larger than the partial charge of the \boldsymbol{H} atom and thus ion-dipole forces are much stronger than hydrogen bonding forces (1).

Marking Criteria	Marks Allocated	
\bullet	Compares how ion-dipole forces are formed to hydrogen bonds	$1-2$
$\bullet \quad$The charge of an ion is much larger than a partial charge, so the attraction is significantly stronger for ion-dipole forces	1	
	Total	$\mathbf{3}$

Physical Properties of Functional Groups: Qs 2.31, 2.41, 2.42, 2.43, 2.44, 2.61, 2.71, 2.81, 2.82, 2.83, 2.91, 2.92, 2.93, 2.94
2.31
[3 marks]

Name of Substance	Rank
Butane	1
Butanoic Acid	5
Methylpropan-2-ol	3
Butanone	2
Butanamide	6
Butan-2-ol	4

Marking Criteria	Marks Allocated
• Half mark for each correctly ranked compound	$1-3$
	Total

2.41
[3 marks]
Both propan-1-ol and propan-2-ol exhibit dispersion forces, dipole-dipole forces and hydrogen bonding between their molecules (1). Despite having the same molar mass and intermolecular forces, propan-2-ol has branching that makes its molecules pack less effectively than propan-1-ol molecules (1). As a result, propan-2-ol has a smaller surface area for intermolecular interaction and therefore has weaker intermolecular forces and a lower boiling point than propan-1-ol (1).

Marking Criteria	Marks Allocated
-Propan-1-ol and propan-2-ol exhibit dispersion forces, dipole-dipole forces and hydrogen bonding between their molecules -Propan-2-ol has branching that makes its molecules pack less effectively -Propan-2-ol has a reduced surface area for intermolecular interaction and therefore a lower boiling point$\quad 1-3$	

2.42
[3 marks]
Octan-1-ol and octanamide both exhibit the same intermolecular forces: dispersion forces, dipole-dipole forces and hydrogen bonding (1). Octanamide has a higher boiling point because it is capable of forming more hydrogen bonds per molecule than octan-1-ol (1). As a result the sum of the strength of intermolecular forces for octanamide is larger, thus giving it a higher boiling point (1)

Marking Criteria	Marks Allocated	
- Octan-1-ol and octanamide exhibit dispersion forces, dipole-dipole forces		
and hydrogen bonding between their molecules		
- Octanamide is capable of forming more hydrogen bonds per molecule		
than octan-1-ol - The sum of intermolecular forces is greater for octanamide giving it a higher boiling point	$1-3$	
	Total	$\mathbf{3}$

Pentane, pentanone and pentanoic acid all exhibit dispersion forces due to the presence of electrons, and these are of a similar strength as the molecules all have similar molar masses (1). Both pentanone and pentanoic acid are polar and therefore exhibit dipole-dipole forces, giving them a higher boiling point than pentane (1). Only pentanoic acid has an $\mathbf{O H}$ group that can form hydrogen bonds with the lone pair electrons on another pentanoic acid molecule (1). As a result, pentanoic acid has the highest boiling point because it has the strongest sum of intermolecular forces (1). Thus the order of boiling points from lowest to highest is pentane, pentanone and then pentanoic acid (1).

| Marking Criteria | Marks Allocated |
| :--- | :--- | :---: |
| -Pentane, pentanone and pentanoic acid all exhibit dispersion forces
 -Pentanone and pentanoic acid exhibit dipole-dipole forces, giving them
 higher boiling points than pentane
 - Only pentaoic acid exhibits hydrogen bonding
 -The sum of intermolecular forces is greatest for pentanoic acid, giving it
 the highest boiling point
 - Order of boiling points from lowest to highest is: pentane, pentanone and
 then pentanoic acid$\quad 1-5$ | |

2.44
[5 marks]
Ethanal, methyl butanoate and butan-2-ol all exhibit dispersion forces with butan-2-ol and methyl butanoate being slightly stronger because they have larger molar masses (1). Ethanal, methyl butanoate and butan-2-ol are all polar and therefore exhibit dipole-dipole forces. Only butan-2-ol has an $\boldsymbol{O H}$ group that can form hydrogen bonds with the lone pair electrons on another butan-2-ol molecule (1). As a result, butan-2-ol has the highest boiling point because it has the strongest sum of intermolecular forces (1). Furthermore, methyl butanoate has a higher boiling point than ethanal because it has stronger dispersion forces from having a higher molar mass (1). Thus the final order of boiling points from lowest to highest is ethanal, methyl butanoate and then butan-2-ol (1).

Marking Criteria	Marks Allocated
- Ethanal, methyl butanoate and butan-2-ol all exhibit dispersion forces - All exhibit dipole-dipole forces, but methyl butanoate has a higher boiling point than ethanal because it has stronger dispersion forces from a larger molar mass - Only butan-2-ol acid exhibits hydrogen bonding - The sum of intermolecular forces is greatest for butan-2-ol, giving it the highest boiling point - Order of boiling points from lowest to highest is: ethanal, methyl butanoate and then butan-2-ol	$1-5$
Total	5

Marking Criteria	Marks Allocated	
\bullet Shows all possible hydrogen bonds		$1-3$
\bullet Shows all lone pair electrons		
• Labels all partial charges	Total	$\mathbf{3}$

(a)

Propanone

Propanoic acid

Propanal

Ethyl methanoate

| Marking Criteria | Marks Allocated |
| :---: | :---: | :---: |
| • Draws compound structure with all lone pair electrons and partial | $1-4$ |
| charges | |\quad Total $\quad 4 \mathbf{4}$

(b)

Name of Substance	Rank
Propanone	4
Ethyl Methanoate	3
Propanal	1
Propanoic Acid	2

Marking Criteria	Marks Allocated	
\bullet Half mark for each correctly ranked compound	$1-2$	
	Total	$\mathbf{2}$

Points to note: Ethyl methanoate is more soluble than propanone because it has more lone pair electrons to form hydrogen bonds with water
(e) Pentan-1-ol exhibits dispersion forces, dipole-dipole forces and hydrogen bonding between its molecules (1).

Marking Criteria		Marks Allocated
\bullet Dispersion forces, dipole-dipole forces and hydrogen bonding		1
	Total	$\mathbf{1}$

(f) Ethene exhibits weak dispersion forces between its molecules (1).

	Marking Criteria	
\bullet Dispersion forces		Marks Allocated
		Total

(g) When pentan-1-ol is added to ethene they form weak dispersion forces between molecules (1).

Marking Criteria		Marks Allocated
\bullet Dispersion forces		1
	Total	$\mathbf{1}$

(h) When pentan-1-ol is added to water not enough energy is released from the weak solute-solvent attractions to break the strong solute-solute attractions (1). As a result, pentan-1-ol will not be miscible in ethene (1).

Marking Criteria	Marks Allocated
$\bullet \quad$Not enough energy will be released from the solute-solvent attractions to break the solute-solute attractions \bullet Pentan-1-ol will not be miscible in ethene	$1-2$
	Total

2.82
[5 marks]
(a) Butanamide exhibits dispersion forces, dipole-dipole forces and hydrogen bonding between its molecules (1).

Marking Criteria		Marks Allocated
\bullet Dispersion forces, dipole-dipole forces and hydrogen bonding		1
	Total	$\mathbf{1}$

(b) Water exhibits dispersion forces, dipole-dipole forces and hydrogen bonding between its molecules (1).

Marking Criteria		Marks Allocated
\bullet Dispersion forces, dipole-dipole forces and hydrogen bonding		1
	Total	$\mathbf{1}$

(c) When butanamide is added to water they form dispersion forces, dipole-dipole forces and hydrogen bonding between molecules (1).

Marking Criteria	Marks Allocated	
\bullet Dispersion forces, dipole-dipole forces and hydrogen bonding		1
	Total	$\mathbf{1}$

(d) When butanamide is added to sufficient energy is released from the solute-solvent attractions to break the solute-solute and solvent-solvent attractions (1). As a result, butanamide will be soluble in water (1).

Marking Criteria	Marks Allocated

- Not enough energy will be released from the solute-solvent attractions to break the solute-solute attractions
- Pentan-1-ol will not be miscible in ethene

Total

2.83

[5 marks]
Pentane exhibits moderately strong dispersion forces between its molecules (1). Methanol exhibits dispersion forces, dipole-dipole forces and hydrogen bonding between its molecules (1). When pentane is added to methanol they will form weak dispersion forces between the molecules (1). These interactions will not release enough energy from the solute-solvent attractions to break the existing solute-solute and solvent-solvent attractions (1). As a result, pentane is not miscible with methanol (1).

| Marking Criteria | Marks Allocated |
| :--- | :---: | :---: |
| -Pentane exhibits moderately strong dispersion forces between its
 molecules | |
| - Methanol exhibits dispersion forces, dipole dipole forces and hydrogen | |
| bonding between its molecules | |
| - When the two compounds are added together they form weak dispersion | |
| forces | |
| -Not enough energy will be released from the solute-solvent attractions to
 break the solute-solute and solvent-solvent attractions | $1-5$ |
| -Pentane is not miscible in methanol | |

(a) Octane is soluble in heptane because they both exhibit strong dispersion forces and form strong dispersion forces that release enough energy to break the solute-solute and solvent-solvent attractions (1). Octane is insoluble in water because the weak dispersion forces formed cannot release enough energy to break the strong hydrogen bonds between water molecules (1).

Marking Criteria	Marks Allocated
- Soluble in heptane because they form strong dispersion forces that	
release enough energy to break the solute-solute and solvent-solvent	
attractions - Insoluble in water because the weak dispersion forces formed don't release enough energy to break strong hydrogen bonds between water molecules	$1-2$
	Total

(b) Methanal is soluble in water because they form dispersion forces, dipole-dipole forces and strong hydrogen bonds that release enough energy to break the solute-solute and solvent-solvent attractions (1). Methanal is insoluble in pentane because weak dispersion forces formed cannot release enough energy to break the solutesolute and solvent-solvent attractions (1).

Marking Criteria	Marks Allocated
- Soluble in heptane because they form dispersion forces, dipole-dipole	
forces and strong hydrogen bonds that release enough energy to break	
the solute-solute and solvent-solvent attractions	

- Insoluble in pentane because the weak dispersion forces formed don't release enough energy to break solute-solute and solvent-solvent attractions

Total
2
(c) Propan-1-ol is soluble with both propanoic acid and propanone because they form dispersion forces, dipoledipole forces and hydrogen bonds that release enough energy to break the solute-solute and solvent-solvent attractions (1). However, propan-1-ol is more soluble in propanoic acid because it forms more hydrogen bonds than when it is added to propanone (1).

Marking Criteria	Marks Allocated
- Soluble in both because they form dispersion forces, dipole-dipole forces	
and hydrogen bonds that release enough energy to break the solute- solute and solvent-solvent attractions More soluble in propanoic acid because more hydrogen bonds are formed	$1-2$

Both water and ethanal exhibit dispersion forces and dipole-dipole forces between their molecules (1). Water also exhibits hydrogen bonding between its molecules. Ethanamine exhibits dispersion forces, dipole-dipole forces and hydrogen bonding between its molecules (1). When water or ethanal are added to ethanamine they will form dispersion forces, dipole-dipole forces and hydrogen bonding between the molecules (1). These interactions release enough energy from the solute-solvent attractions to break the existing solute-solute and solvent-solvent attractions making them both soluble in ethanamine (1). However, water is more soluble than ethanal because it can form more hydrogen bonds per molecule with ethamine (1).

| Marking Criteria | Marks Allocated |
| :--- | :--- | :---: |
| - Water and ethanal both exhibit dispersion forces and dipole-dipole forces | |
| between their molecules. Water also exhibits hydrogen bonding | |
| -Ethanamine exhibits dispersion forces, dipole-dipole forces and
 hydrogen bonding between its molecules
 - When added to ethanamine both compounds form dispersion forces,
 dipole-dipole forces and hydrogen bonding between the molecules
 -For both compounds sufficient energy will be from the solute-solvent
 attractions to break the solute-solute and solvent-solvent attractions
 making them soluble
 Water is more soluble than ethanal because it can form more hydrogen
 bonds per molecule with ethanamine\quadTotal | |

Both hept-2-ene and heptanol exhibit moderately strong dispersion forces between their molecules (1). Heptanol also exhibits dipole-dipole forces and hydrogen bonding between its molecules. Octane exhibits moderately strong dispersion forces between its molecules (1). When hept-2-ene or heptanol are added to ethanamine they will form moderately strong dispersion forces between the molecules (1). For hept-2-ene these interactions release enough energy from the solute-solvent attractions to break the existing solute-solute and solvent-solvent attractions making it soluble in octane. However heptanol is insoluble because this energy release is not sufficient to break its strong solute-solute attractions (1).

| Marking Criteria | Marks Allocated |
| :--- | :---: | :---: |
| - Hept-2-ene and heptanol both exhibit dispersion forces between their | |
| molecules. Heptanol also exhibits dipole-dipole forces and hydrogen | |
| bonding | |
| - Octane exhibits dispersion forces between its molecules | |
| - When added to octane both compounds form dispersion forces between | |
| the molecules | |
| - For hept-2-ene sufficient energy will be from the solute-solvent | |
| attractions to break the solute-solute and solvent-solvent attractions | |
| making it soluble | |
| Heptanol is insoluble because the energy release is not sufficient to break | |
| the solute-solute attractions. | |

Both butanoic acid and butanamide exhibit dispersion forces, dipole-dipole forces and hydrogen bonding between their molecules (1). Water also exhibits dispersion forces, dipole-dipole forces and hydrogen bonding between its molecules (1). When butanoic acid or butanamide are added to water they will form dispersion forces, dipole-dipole forces and hydrogen bonding between the molecules (1). These interactions release enough energy from the solutesolvent attractions to break the existing solute-solute and solvent-solvent attractions making them both soluble in water (1). However, butanamide is more soluble than butanoic acid because it can form more hydrogen bonds per molecule with water (1).

| Marking Criteria | Marks Allocated |
| :--- | :---: | :---: |
| -Butanoic acid and butanamide both exhibit dispersion forces, dipole-
 dipole forces and hydrogen bonding between their molecules
 - Water exhibits dispersion forces, dipole-dipole forces and hydrogen
 bonding between its molecules
 - When added to water both compounds form dispersion forces, dipole-
 dipole forces and hydrogen bonding between the molecules | |
| -For both compounds sufficient energy will be from the solute-solvent
 attractions to break the solute-solute and solvent-solvent attractions
 making them soluble
 Butanamide is more soluble than butanoic acid because it can form more
 hydrogen bonds per molecule with water | $1-5$ |

Problem Set 12 - Organic Reactions and Empirical Formula Progressive Questions

Concept 1

Functional Group Reactions - Progressive Questions Answers

Combustion Reactions: Q1
1.
(a) $\mathrm{C}_{\mathbf{4}} \mathrm{H}_{\mathbf{1 0}} \mathrm{O}_{(a q)}+\mathbf{2 \mathrm { O } _ { \mathbf { 2 } } ^ { (g) }} \mathbf{\rightarrow} 4 \mathrm{C}_{(s)}+5 \mathrm{H}_{2} \mathrm{O}_{(g)}$
(1)

Marking Criteria	Marks Allocated
$\bullet C_{4} H_{10} O_{(a q)}+2 O_{2(g)} \rightarrow 4 C_{(s)}+5 \mathrm{H}_{2} O_{(g)}$	1
1	

(b) $\mathrm{C}_{\mathbf{4}} \mathrm{H}_{\mathbf{1 0}} \mathrm{O}_{(a q)}+\mathbf{6 0} \mathrm{O}_{\mathbf{2 (g)}} \rightarrow 4 \mathrm{CO}_{2(\mathrm{~g})}+5 \mathrm{H}_{2} \mathrm{O}_{(g)}$

Marking Criteria	Marks Allocated	
$\bullet \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{(a q)}+6 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{CO}_{2(\mathrm{~g})}+5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$	1	
	Total	1

(c)

Reaction 1:

$$
\begin{align*}
& \mathrm{C}_{\mathbf{4}} \mathrm{H}_{\mathbf{1 0}} \mathrm{O}_{(a q)}+2 \mathrm{O}_{\mathbf{2}(\mathrm{g})} \rightarrow 4 \mathrm{C}_{(s)}+5 \mathrm{H}_{2} \mathrm{O}_{(g)} \\
& (-2)(+\mathbf{1})(-2) \quad(0) \tag{1}
\end{align*}
$$

Oxidised
Reduced
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
(1)

Reaction 2:

$$
\begin{equation*}
\mathrm{C}_{\mathbf{4}} \mathrm{H}_{10} \mathrm{O}_{(a q)}+6 \mathrm{O}_{2(g)} \rightarrow 4 \mathrm{CO}_{2(g)}+5 \mathrm{H}_{2} \mathrm{O}_{(g)} \tag{1}
\end{equation*}
$$

Oxidised
Reduced
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
(1)

Marking Criteria	Marks Allocated
\bullet States the correct oxidation numbers for each reaction	$1-2$
$\bullet \quad$ States the correct oxidised and reduced species for each reaction	$1-2$
Total	$\mathbf{4}$

Oxidation of Alcohols: Q2, Q3, Q4
2.
[16 marks]
(a)

Alcohol	Oxidant	Reaction?	Structural formula of product
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{MnO}_{4}{ }^{-} / \mathrm{H}^{+}$	Yes (1)	
(ii) Pentan-2-ol	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{H}^{+}$	Yes (1)	
(iii)	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{H}^{+}$	Yes (1)	
(iv) Methylpropan-2-ol	$\mathrm{MnO}_{4}{ }^{-} / \mathrm{H}^{+}$	No (1)	
(v) $\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{MnO}_{4}{ }^{-} / \mathrm{H}^{+}$	Yes (1)	
(vi) $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{OHCHOHCH}$	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{H}^{+}$	Yes (1)	

Marking Criteria	Marks Allocated			
$\bullet \quad$ Determines if oxidation is/isn't possible and draws product diagram	$1-6$			
Total				6

(b)
(i)

Reduction Half-Equation: $\quad \mathrm{MnO}_{4(a q)}^{-}+8 \mathrm{H}_{(a q)}^{+}+5 e^{-} \rightarrow \mathrm{Mn}_{(a q)}^{2+}+4 \mathrm{H}_{2} \mathrm{O}_{(l)} \quad$ (1)

$$
\begin{equation*}
5 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{(a q)}+4 \mathrm{MnO}_{4(a q)}^{-}+12 \mathrm{H}_{(a q)}^{+} \rightarrow 5 \mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+4 \mathrm{Mn}_{(a q)}^{2+}+11 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\text { Reduction Half-Equation: } \quad \mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+14 \mathrm{H}_{(a q)}^{+}+6 e^{-} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+7 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
3 \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{(a q)}+\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+8 \mathrm{H}_{(a q)}^{+} \rightarrow 3 \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{(a q)}+2 \mathrm{Cr}_{(a q)}^{3+}+7 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

(iii)

Reduction Half-Equation: $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+14 \mathrm{H}_{(a q)}^{+}+6 e^{-} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+7 \mathrm{H}_{2} \mathrm{O}_{(l)}$

$$
3 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{(a q)}+\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+8 \mathrm{H}_{(a q)}^{+} \rightarrow 3 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2(a q)}+2 \mathrm{Cr}_{(a q)}^{3+}+4 \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

(iv) No reaction
(v)

$$
\begin{equation*}
5 \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{(a q)}+\mathbf{8} \mathrm{MnO}_{4(a q)}^{-}+12 \mathrm{H}_{(a q)}^{+} \rightarrow 5 \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{4(a q)}+8 \mathrm{Mn}_{(a q)}^{2+}+22 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

(vi)

Reduction Half-Equation: $\quad \mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+14 \mathrm{H}_{(a q)}^{+}+6 e^{-} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+7 \mathrm{H}_{2} \mathrm{O}_{(l)}$

$$
3 \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{2(a q)}+\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+\mathbf{8} \mathrm{H}_{(a q)}^{+} \rightarrow 3 \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2(a q)}+2 \mathrm{Cr}_{(a q)}^{3+}+7 \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

(a)

Molecular formula	Product	Reactant Isomer required
(i) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	Propanoic acid	
(ii) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	Butanone	 Butan-2-ol (1)
(iii) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	Propanone (acetone)	
(iv) $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{2}$	Hexan-1,6-dial	
(v) $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}$	 Cinnamaldehyde	

Marking Criteria	Marks Allocated
\bullet Draws correct structure and provides correct name	$1-5$
Total	$\mathbf{5}$

(b)
(i)

$$
\begin{equation*}
\text { Reduction Half-Equation: } \quad \mathrm{MnO}_{4}^{-}{ }_{(a q)}^{-}+8 \mathrm{H}_{(a q)}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}_{(a q)}^{2+}+4 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
5 \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{(a q)}+4 \mathrm{MnO}_{4(a q)}^{-}+12 \mathrm{H}_{(a q)}^{+} \rightarrow 5 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2(a q)}+4 \mathrm{Mn}_{(a q)}^{2+}+11 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

(ii)
 Reduction Half-Equation: $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+14 \mathrm{H}_{(a q)}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+7 \mathrm{H}_{2} \mathrm{O}_{(l)}$

$$
\begin{equation*}
3 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{(a q)}+\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+\mathbf{8} \mathrm{H}_{(a q)}^{+} \rightarrow 3 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{(a q)}+2 \mathrm{Cr}_{(a q)}^{3+}+7 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

(iii)

Reduction Half-Equation: $\quad \mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+14 \mathrm{H}_{(a q)}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+7 \mathrm{H}_{2} \mathrm{O}_{(l)}$

$$
3 \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{(a q)}+\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+8 \mathrm{H}_{(a q)}^{+} \rightarrow 3 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{(a q)}+2 \mathrm{Cr}_{(a q)}^{3+}+7 \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

(iv)

Oxidation Half-Equation:

$$
\begin{equation*}
\text { Reduction Half-Equation: } \quad \mathrm{MnO}_{4(a q)}^{-}+8 \mathrm{H}_{(a q)}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}_{(a q)}^{2+}+4 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
5 \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{2(a q)}+\mathbf{8} \mathrm{MnO}_{4(a q)}^{-}+\mathbf{2 4 \mathrm { H } _ { (a q) } ^ { + }} \rightarrow 5 \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4(a q)}+8 \mathrm{Mn}_{(a q)}^{2+}+22 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

(v)

Oxidation Half-Equation:

$$
\begin{equation*}
\text { Reduction Half-Equation: } \quad \mathrm{MnO}_{4(a q)}^{-}+8 \mathrm{H}_{(a q)}^{+}+5 e^{-} \rightarrow \mathrm{Mn}_{(a q)}^{2+}+4 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
5 \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{(a q)}+2 \mathrm{MnO}_{4(a q)}^{-}+6 \mathrm{H}_{(a q)}^{+} \rightarrow 5 \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{(a q)}+2 \mathrm{Mn}_{(a q)}^{2+}+8 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

Marking Criteria	Marks Allocated	
\bullet	Writes correct oxidation equation	$1-5$
\bullet	Writes correct reduction equation	$1-5$
\bullet	Writes correct overall redox equation	$1-5$
		Total

4.

(a)

Label	Observation	Oxidant used	IUPAC name of compound
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	An orange solution is added to a colourless solution. The mixture rapidly turns deep green and has a sour taste when heated.	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$	Propan-1-ol (1)
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	A purple solution is added to a colourless solution. The mixture rapidly turns pale pink when heated and has a sour taste.	MnO_{4}^{-}	Butan-1-ol (1)
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	An orange solution is added to a colourless solution. The mixture slowly turns deep green when heated and does not have a sour taste.	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$	Propan-2-ol (1)
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	An orange solution is added to a colourless solution. The mixture remains orange when heated.	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$	Methylpropan-2-ol (1)

Marking Criteria	Marks Allocated		
\bullet Determines correct oxidant and IUPAC name of compound	$1-4$		
Total			

(b)
(i)

(ii)

Oxidation Half-Equation:

 $+4 H^{+}+4 e^{-}$
(iii)

Oxidation Half-Equation:

(iv) No reaction (1)

Marking Criteria	Marks Allocated		
\bullet Writes correct oxidation equations	$1-4$		
4			

5.

(a)
(i) $\mathbf{2 C l C H}_{2} \mathbf{C O O H}_{(a q)}+\mathrm{CaCO}_{3(s)} \rightarrow \mathrm{Ca}\left(\mathrm{ClCH}_{2} \mathrm{COO}\right)_{2(a q)}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
(ii) $\mathbf{6 C l C H}_{2} \mathbf{C O O H}_{(\boldsymbol{a q})}+\mathbf{2 A l}_{(s)} \rightarrow 2 \mathrm{Al}\left(\mathrm{ClCH}_{2} \mathrm{COO}\right)_{3(a q)}+3 \mathrm{H}_{2(\mathrm{~g})}$
(iii) $\mathbf{6 C l C H}_{\mathbf{2}} \mathrm{COOH}_{(\boldsymbol{a q})}+\mathrm{Fe}_{\mathbf{2}} \mathrm{O}_{\mathbf{3 (s)}} \rightarrow 2 \mathrm{Fe}\left(\mathrm{ClCH}_{2} \mathrm{COO}\right)_{3(a q)}+3 \mathrm{H}_{2} \mathrm{O}_{(l)}$
(iv) $\mathrm{ClCH}_{2} \mathrm{COOH}_{(a q)}+\mathrm{NaOH}_{(s)} \rightarrow \mathrm{Na}\left(\mathrm{ClCH}_{2} \mathrm{COO}\right)_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$

Marking Criteria	Marks Allocated		
\bullet Writes correct balanced equations	$1-4$		
4			

(b)
(i) A colourless solution is added to a white solid (1), to produce a colourless solution and a colourless, odourless gas (1).
(ii) A colourless solution is added to a silver solid (1), to produce a colourless solution and a colourless, odourless gas (1).
(iii) A colourless solution is added to a pale brown solid (1), to produce a pale brown solution (1).
(iv) A colourless solution is added to a white solid (1), to produce a colourless solution (1).

Marking Criteria	Marks Allocated	
\bullet Provides correct observations for reactants	$1-4$	
\bullet Provides correct observations for products	$1-4$	
	Total	$\mathbf{8}$

6.

[5 marks]
(a)

Marking Criteria	Marks Allocated
\bullet Circles carboxylic acid and ketone groups	$1-2$
	Total

(b) Ethanoic acid and 2-hydroxylbenzene-1-oic acid (you don't need to know this), and esterification reaction (1)

Marking Criteria	Marks Allocated
\bullet Names the two compounds and states esterification reaction	1
	Total

(c)

$+$

Concentrated $\xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}}$

(2)

Aspirin

Marking Criteria	Marks Allocated	
\bullet Correct reactants drawn		$1-2$
\bullet Correct products drawn	Total	$\mathbf{2}$

7.

[11 marks]
(a)

Methanol
Chloroethanoic Acid

(2)

Marking Criteria	Marks Allocated	
\bullet Correct reactants drawn		$1-2$
\bullet Correct products drawn	Total	$\mathbf{2}$

(b) The following three things could be done to increase the reaction rate:

- Add a concentrated sulfuric acid catalyst (1)
- Increase the temperature of the system (1)
- Increase the concentration of methanol and/or chloroethanoic acid (1)

Marking Criteria	Marks Allocated
\bullet Add concentrated sulfuric acid catalyst	
\bullet - Increase the temperature	$1-3$
\bullet Increase the reactant concentration	Total
	$\mathbf{3}$

(c)

Marking Criteria	Marks Allocated	
\bullet Correct reactants drawn		$1-2$
\bullet Correct products drawn	Total	$\mathbf{2}$

(d) An oxidant such as acidified potassium permanganate (KMnO_{4}) or acidified potassium dichromate ($\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$). (1)

For acidified potassium permanganate (KMnO_{4}):

Oxidation Half-Equation:

Reduction Half-Equation: $\mathrm{MnO}_{4(a q)}^{-}+8 \mathrm{H}_{(a q)}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}_{(a q)}^{2+}+4 \mathrm{H}_{2} \mathrm{O}_{(l)}$

$$
\begin{equation*}
\mathbf{5 C H}_{4} \boldsymbol{O}_{(a q)}+2 \mathbf{M n O}_{4(a q)}^{-}+\mathbf{6} \mathrm{H}_{(a q)}^{+} \rightarrow 5 \mathrm{CH}_{2} \mathrm{O}_{(a q)}+2 \mathrm{Mn}_{(a q)}^{2+}+8 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

For acidified potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$:

$$
\begin{equation*}
\text { Reduction Half-Equation: } \quad \mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+14 \mathrm{H}_{(a q)}^{+}+6 e^{-} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+7 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
3 \mathrm{CH}_{4} \mathrm{O}_{(a q)}+\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+8 \mathrm{H}_{(a q)}^{+} \rightarrow 3 \mathrm{CH}_{2} \mathrm{O}_{(a q)}+2 \mathrm{Cr}_{(a q)}^{3+}+7 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

Marking Criteria	Marks Allocated				
- States an appropriate oxidant					
- Writes the correct oxidation equation	$1-4$				
- Writes the correct reduction equation					
- Writes the correct overall equation					
Total					$\mathbf{4}$

Empirical Formula - Progressive Questions Answers

Empirical Formula: Q1, Q2, Q3
1.

$\mathrm{C}_{8} \mathrm{H}_{18}$	$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{COOH}$	Hexan-1,4-diol
$\mathrm{C}_{4} \mathrm{H}_{9}(1)$	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ (1)	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}$ (1)

3-ethylhexane-1,6-dial
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2}$ (1)
$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}$ (1)
2.
[10 marks]
(a)
(i)

$$
\begin{align*}
\%(\boldsymbol{C}) & =\frac{m(C)}{m(\text { sample })} \times 100 \\
& =\frac{8.265}{30} \times 100 \\
& =27.6 \% \tag{1}
\end{align*}
$$

(ii)

$$
\begin{aligned}
\boldsymbol{m}(\boldsymbol{H}) & =30-18.610-8.265 \\
& =3.125 g \\
& \%(\boldsymbol{H})=\frac{3.125}{30} \times 100 \\
& =10.4 \%(\mathbf{1})
\end{aligned}
$$

(b)

$$
\begin{aligned}
m(C) & =0.62 \times 10.00 \\
& =6.2 g(1)
\end{aligned}
$$

$\boldsymbol{m}(\boldsymbol{O})=0.186 \times 10.00$
$=1.86 \mathrm{~g}(1)$

$$
\begin{aligned}
\%(\boldsymbol{H}) & =100-\%(C)-\%(O) \\
& =100-62.0-18.6 \\
& =19.4 \% \quad(\mathbf{1}) \\
\boldsymbol{m}(\boldsymbol{H}) & =0.186 \times 10.00 \\
& =1.86 \mathrm{~g}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\text { Unknown Compound }+\mathrm{O}_{2}(\mathrm{~g}) & \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
& m\left(\mathrm{CO}_{2}\right)=18.49 \mathrm{~g} \quad \boldsymbol{m (\mathrm { H } _ { 2 } \mathrm { O }) = 8 . 5 2 \mathrm { g }}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{n}\left(\boldsymbol{C O}_{2}\right) & =\frac{18.49}{12.01+32} \\
& =\mathbf{0 . 4 2 0} \mathbf{m o l} \\
\boldsymbol{n}(\boldsymbol{C}) & =n\left(\mathrm{CO}_{2}\right) \\
& =\mathbf{0 . 4 2 0} \mathbf{~ m o l} \\
\boldsymbol{m}(\boldsymbol{C}) & =n M \\
& =0.420 \times 12.01 \\
& =5.044 \boldsymbol{g} \quad \mathbf{1}) \\
\%(\boldsymbol{C}) & =\frac{m(C)}{m(\text { Sample })} \times 100 \\
& =\frac{5.044}{7.305} \times 100 \\
& =\mathbf{6 9 . 1} \% \quad \mathbf{1})
\end{aligned}
$$

$$
\begin{aligned}
n\left(\mathrm{H}_{2} \mathrm{O}\right) & =\frac{8.52}{2.016+16} \\
& =0.4729 \mathrm{~mol} \\
n(H) & =n\left(\mathrm{H}_{2} \mathrm{O}\right) \times 2 \\
& =0.4729 \times 2 \\
& =0.9458 \mathrm{~mol}
\end{aligned}
$$

$$
m(H)=n M
$$

$$
=0.9458 \times 1.008
$$

$$
=0.9534 \mathrm{~g}
$$

$$
\%(H)=\frac{m(H)}{m(\text { Sample })} \times 100
$$

$$
=\frac{0.9534}{7.305} \times 100
$$

$$
=13.1 \%
$$

(a) $\quad \%(\boldsymbol{C})=\frac{m(C)}{m(\text { Sample })} \times 100$

$$
\begin{aligned}
\%(\boldsymbol{O}) & =\frac{m(0)}{m(\text { Sample })} \times 100 \\
& =\frac{0.298}{1.602} \times 100 \\
& =\mathbf{1 8 . 6} \%
\end{aligned}
$$

$$
\%(\boldsymbol{H})=100-\%(C)-\%(O)
$$

$$
\begin{aligned}
& =100-69.7-18.6 \\
& =\mathbf{1 1 . 7} \%
\end{aligned}
$$

	\boldsymbol{C}	\boldsymbol{H}	\boldsymbol{O}
Mass in $\mathbf{1 0 0 g}$	69.7 g	11.7 g	18.6 g
Moles	$\frac{69.7}{12.01}=5.806 \mathrm{~mol}$	$\frac{11.7}{1.008}=11.580 \mathrm{~mol}$	$\frac{18.6}{16.00}=1.163 \mathrm{~mol}$
Simple Ratio	$\frac{5.806}{1.163}=4.992$	$\frac{11.580}{1.163}=9.957$	$\frac{1.163}{1.163}=1$
Whole Ratio	5	10	1

\therefore the empirical formula is $\boldsymbol{C}_{\mathbf{5}} \boldsymbol{H}_{\mathbf{1 0}} \mathbf{O}$
(b)

$$
\begin{aligned}
\%(\boldsymbol{O}) & =100-\%(C)-\%(H) \\
& =100-39.99-6.71 \\
& =53.30 \%
\end{aligned}
$$

	\boldsymbol{C}	\boldsymbol{H}	\boldsymbol{O}
Mass in $\mathbf{1 0 0 g}$	39.99 g	6.71 g	53.3 g
Moles	$\frac{39.99}{12.01}=3.33 \mathrm{~mol}$	$\frac{6.71}{1.008}=6.657 \mathrm{~mol}$	$\frac{53.3}{16.00}=3.331 \mathrm{~mol}$
Simple Ratio	$\frac{3.33}{3.331}=0.9997$	$\frac{6.6567}{3.331}=1.998$	$\frac{3.331}{3.331}=1$
Whole Ratio	1	2	1

The empirical formula is $\boldsymbol{C H}_{\mathbf{2}} \mathbf{O}$ which is not valuable because the empirical formula is not $\boldsymbol{C}_{\mathbf{5}} \boldsymbol{H}_{\mathbf{1 0}} \boldsymbol{O}$ (1)
(c)

$$
\begin{aligned}
\text { Combustion: Unknown }+\mathrm{O}_{2(\mathrm{~g})} & \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
& m\left(\mathrm{CO}_{2}\right)=\mathbf{1 1 . 8 0 9 g} m\left(\mathrm{H}_{2} \mathrm{O}\right)=4.834 \mathrm{~g}
\end{aligned}
$$

$$
n\left(\boldsymbol{C O}_{2}\right)=\frac{11.809}{44.01}
$$

$$
n\left(H_{2} \mathrm{O}\right)=\frac{4.834}{18.016}
$$

$$
\boldsymbol{m}(\boldsymbol{O})=4.622-m(C)-m(H)
$$

$$
=4.622-3.223-0.5410
$$

$$
=0.858 g
$$

$$
\begin{aligned}
\boldsymbol{n}(\boldsymbol{C}) & =n\left(\mathrm{CO}_{2}\right) \\
& =\mathbf{0 . 2 6 8 3} \mathbf{~ m o l} \\
\boldsymbol{m}(\boldsymbol{C}) & =n M \\
& =0.2683 \times 12.01 \\
& =3.223 \mathrm{~g}
\end{aligned}
$$

$$
n(H)=n\left(H_{2} O\right) \times 2
$$

$$
=0.2683 \times 2
$$

$$
=0.5366 \mathrm{~mol}
$$

$$
\begin{align*}
m(H) & =n M \\
& =0.5366 \times 1.008 \\
& =0.541 \mathrm{~g} \tag{1}
\end{align*}
$$

	\boldsymbol{C}	\boldsymbol{H}	\boldsymbol{O}
Mass in $\mathbf{1 0 0 g}$	3.223 g	0.541 g	0.858 g
Moles	$\frac{3.223}{12.01}=0.2684 \mathrm{~mol}$	$\frac{0.541}{1.008}=0.5367 \mathrm{~mol}$	$\frac{0.858}{16.00}=0.0536 \mathrm{~mol}$
Simple Ratio	$\frac{0.2684}{0.0536}=5.007$	$\frac{0.5367}{0.0536}=10.01$	$\frac{0.0536}{0.0536}=1$
Whole Ratio	5	10	1

\therefore the empirical formula is $\boldsymbol{C}_{\mathbf{5}} \boldsymbol{H}_{\mathbf{1 0}} \mathbf{O}$ and it is a valuable compound (1)

Difficult Empirical Formula Calculations: Q4, Q5

4.

(a)

$$
\begin{aligned}
\text { Ratio } & =\frac{M(\text { Compound })}{M(\text { Empirical })} \\
& =\frac{726.902}{12.01 \times 4+1.008 \times 4+14.01} \\
& =\mathbf{1 1} \quad \text { (1) }
\end{aligned}
$$

\therefore it is not the compound (1)
(b)

$$
\begin{align*}
n(\text { Compound }) & =\frac{P V}{R T} \\
& =\frac{101.35 \times 28.39 \times 10^{-3}}{8.314 \times(21+273.15)} \\
& =\mathbf{1 . 1 7 7 \times 1 0 ^ { - 3 }} \mathbf{~ m o l}(1) \\
M(\text { Compound }) & =\frac{m}{n} \\
& =\frac{0.933}{1.177 \times 10^{-3}} \\
& =792.7 \mathrm{~g} \mathrm{~mol}^{-1} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
\text { Ratio } & =\frac{M(\text { Compound })}{M(\text { Empirical })} \\
& =\frac{792.7}{12.01 \times 4+1.008 \times 4+14.01} \\
& =\mathbf{1 2} \mathbf{(1)}
\end{aligned}
$$

\therefore this is the valuable compound (1)
5.
[16 marks]
(a)

$$
\begin{aligned}
\text { Unknown }+\mathrm{O}_{2(\mathrm{~g})} & \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{N}_{2(\mathrm{~g})} \\
& n\left(\mathrm{CO}_{2}\right)=\mathbf{0 . 8 0 0 g} m\left(\mathrm{H}_{2} \mathrm{O}\right)=0.382 \mathrm{~g}
\end{aligned}
$$

$$
\begin{align*}
\boldsymbol{n}\left(\boldsymbol{C O}_{2}\right) & =\frac{0.800}{44.01} \\
& =\mathbf{0 . 0 1 8 2} \mathbf{~ m o l} \\
\boldsymbol{n}(\boldsymbol{C})= & n\left(\mathrm{CO}_{2}\right) \tag{1}\\
= & \mathbf{0 . 0 1 8 2} \mathbf{~ m o l} \\
\boldsymbol{m}(\boldsymbol{C})= & n M \\
= & 0.0182 \times 12.01 \\
= & 0.2186 \mathrm{~g} \tag{1}
\end{align*}
$$

$$
\begin{align*}
n\left(H_{2} \mathrm{O}\right) & =\frac{0.382}{18.016} \\
& =0.0212 \mathrm{~mol} \\
n(H)= & n\left(H_{2} \mathrm{O}\right) \times 2 \\
= & 0.0212 \times 2 \\
= & 0.0424 \mathrm{~mol} \\
m(H)= & n M \\
= & 0.0424 \times 1.008 \\
= & 0.04274 \mathrm{~g} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
\boldsymbol{n}\left(N_{2}\right) & =\frac{101.2 \times 0.074984}{8.314 \times 301.15} \\
& =3.031 \times 10^{-\mathbf{3}} \mathbf{~ m o l} \\
\boldsymbol{n}(N) & =n\left(N_{2}\right) \times 2 \\
& =3.031 \times 10^{-3} \times 2 \\
& =6.062 \times 10^{-3} \mathbf{~ m o l} \\
\boldsymbol{m}(N) & =n M \\
& =6.062 \times 10^{-3} \times 14.01 \\
& =\mathbf{0 . 0 8 4 9 3} \mathbf{g}
\end{aligned}
$$

$$
\begin{aligned}
m(O) & =0.540-m(C)-m(H)-m(N) \\
& =0.540-0.2186-0.04274-0.08493 \\
& =0.1937 \mathrm{~g}
\end{aligned}
$$

	\boldsymbol{C}	\boldsymbol{H}	\boldsymbol{N}	\mathbf{O}				
Mass	0.2186 g	0.04274 g	0.08493 g	0.1937 g				
Moles	$\frac{0.2186}{12.01}=0.0182 \mathrm{~mol}$	$\frac{0.04274}{1.008}=0.0424 \mathrm{~mol}$	$\frac{0.08493}{14.01}=0.00606 \mathrm{~mol}$	$\frac{0.1937}{16.00}$				
$=0.0121 \mathrm{~mol}$					$⿻$	Simple Ratio	$\frac{0.0182}{0.00606}=3.003$	$\frac{0.0424}{0.00606}=6.9967$
:---:	:---:	:---:						
Whole Ratio	3	$\frac{0.00606}{0.00606}=1$						

\therefore the empirical formula is $\boldsymbol{C}_{3} \boldsymbol{H}_{7} \mathbf{N O}_{2}$
(b)

$$
\text { Sample }+\mathrm{NaOH}_{(a q)} \rightarrow \text { Salt }+\mathrm{H}_{2} \mathrm{O}_{(l)}
$$

$$
\begin{aligned}
n(\mathrm{NaOH}) & =c V \\
& =0.0200 \times 0.02334 \\
& =4.668 \times 10^{-4} \mathrm{~mol}
\end{aligned}
$$

$$
n(\text { Sample })_{10 m L}=n(N a O H)
$$

$$
=4.668 \times 10^{-4} \mathrm{~mol}
$$

$$
\boldsymbol{n}(\text { Sample })_{100 m L}=n(\text { Sample })_{10 m L} \times 10
$$

$$
=4.668 \times 10^{-4} \times 10
$$

$$
\begin{equation*}
=4.668 \times 10^{-3} \mathrm{~mol} \tag{1}
\end{equation*}
$$

$$
M(\text { Compound })=\frac{m}{n}
$$

$$
=\frac{0.4159}{4.668 \times 10^{-3}}
$$

$$
\begin{equation*}
=89.096 \mathrm{~g} \mathrm{~mol}^{-1} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\text { Ratio } & =\frac{M(\text { Compound })}{M(\text { Empirical })} \\
& =\frac{89.096}{12.01 \times 3+1.008 \times 7+14.01+2 \times 16} \\
& =\mathbf{1} \quad \mathbf{1})
\end{aligned} \quad \begin{aligned}
\text { Molecular } & =\text { Empirical } \times \mathbf{1} \\
& =C_{3} H_{7} \mathrm{NO}_{2}
\end{aligned}
$$

(c) The common amino acid it is alanine (1):

(1)

Alanine (Ala)

Problem Set 12 - Organic Reactions and Empirical Formula Repetitive Questions

Concept 1

Functional Group Reactions - Repetitive Questions Answers

Combustion Reactions: Qs 1.11
1.11
(a) $2 \mathrm{C}_{\mathbf{8}} \mathrm{H}_{\mathbf{1 8}(\mathrm{g})}+\mathbf{2 5 O _ { 2 (g) }} \rightarrow 16 \mathrm{CO}_{2(g)}+18 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad$ (1)
(b) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{(\mathrm{g})}+4 \mathrm{O}_{\mathbf{2}(\mathrm{g})} \rightarrow 4 \mathrm{CO}_{(\mathrm{g})}+5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad$ (1)
(c) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{(\mathrm{g})}+3 \mathbf{3 O}_{\mathbf{2}(\mathrm{g})} \rightarrow 3 \mathrm{CO}_{(\mathrm{g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ (1)
(d) $\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{\mathbf{2 (g)}} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ (1)
(e) $\mathbf{2 C} \mathbf{C}_{3} \mathbf{H}_{6} \mathrm{O}_{2(g)}+\mathbf{7 O}_{\mathbf{2 g}_{(g)}} \rightarrow 6 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ (1)
(f) $\mathrm{CH}_{3} \mathbf{O H}_{(g)}+\mathrm{O}_{\mathbf{2}(\mathrm{g})} \rightarrow \mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ (1)

| Marking Criteria | Marks Allocated |
| :---: | :---: | :---: |
| \bullet Correct combustion and incomplete combustion equations written | $1-6$ |
| Total | $\mathbf{6}$ |

Oxidation of Alcohols: Qs 1.21, 1.22, 1.41, 1.42
1.21
[10 marks]
(a)

Oxidation Half-Equation:

$$
\begin{align*}
& \text { Reduction Half-Equation: } \mathrm{MnO}_{4(a q)}^{-}+8{H_{(a q)}^{+}+5 e^{-} \rightarrow \mathrm{Mn}_{(a q)}^{2+}+4 \mathrm{H}_{2} \mathrm{O}_{(l)}}^{\left.\mathbf{5 C} \mathbf{C}_{\mathbf{2}} \mathbf{H}_{6} \mathrm{O}_{(a q)}+\mathbf{4 M n O} \mathbf{M a q}\right)_{-}^{\left(a 2 \mathbf{H}_{(a q)}^{+}\right.} \rightarrow 5 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2(a q)}+4 \mathrm{Mn}_{(a q)}^{2+}+11 \mathrm{H}_{2} \mathrm{O}_{(l)}} \tag{1}
\end{align*}
$$

(b)

Oxidation Half-Equation:

 $+2 H^{+}+2 e^{-}$

Reduction Half-Equation: $\quad \mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+14 \mathrm{H}_{(a q)}^{+}+6 e^{-} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+7 \mathrm{H}_{2} \mathrm{O}_{(l)}$

$$
\begin{equation*}
3 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{(a q)}+\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+\mathbf{8} \mathrm{H}_{(a q)}^{+} \rightarrow 3 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{(a q)}+2 \mathrm{Cr}_{(a q)}^{3+}+7 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

(c) No reaction (1)
(d)

Oxidation Half-Equation:

Reduction Half-Equation: $\quad \mathrm{MnO}_{4(a q)}^{-}+8 H_{(a q)}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}_{(a q)}^{2+}+4 \mathrm{H}_{2} \mathrm{O}_{(l)}$

$$
\overline{5 C_{\mathbf{6}} \mathbf{H}_{\mathbf{1 4}} \mathrm{O}_{(a q)}+\mathbf{2 M n O _ { \mathbf { 4 } } ^ { (a q) }}-\mathbf{6} \mathrm{H}_{(\boldsymbol{a q})}^{+} \rightarrow 5 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{(a q)}+2 \mathrm{Mn}_{(a q)}^{2+}+8 \mathrm{H}_{2} \mathrm{O}_{(l)}}
$$

Marking Criteria	Marks Allocated
- Correct oxidation equation	$1-3$
- Correct reduction equation	$1-3$
- Correct overall balanced equation	$1-3$
- States 'no reaction' for reaction (c)	$\mathbf{1}$

1.22
[7 marks]
(a) No reaction (1)
(b)

Oxidation Half-Equation:

 $+2 H^{+}+2 e^{-}$
(1)

Reduction Half-Equation: $\quad \mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+14 \mathrm{H}_{(a q)}^{+}+6 e^{-} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+7 \mathrm{H}_{2} \mathrm{O}_{(l)}$
(1)

$$
\begin{equation*}
3 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{(a q)}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+8 \mathrm{H}_{(a q)}^{+} \rightarrow 3 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2(a q)}+2 \mathrm{Cr}_{(a q)}^{3+}+4 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

(c)

Reduction Half-Equation: $\quad \mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+14 \mathrm{H}_{(a q)}^{+}+6 e^{-} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+7 \mathrm{H}_{2} \mathrm{O}_{(l)}$

$$
\begin{equation*}
3 \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{(a q)}+\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+8 \mathrm{H}_{(a q)}^{+} \rightarrow 3 \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{(a q)}+2 \mathrm{Cr}_{(a q)}^{3+}+7 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

Marking Criteria	Marks Allocated
- Correct oxidation equation	$1-2$
- Correct reduction equation	$1-2$
- Correct overall balanced equation	$1-2$
- States 'no reaction' for reaction (a)	
	Total

(a) A purple solution is added to a colourless solution (1), to produce a pale pink solution (1).
(b) A orange solution is added to a colourless solution (1), to produce a deep green solution (1).
(c) A purple solution is added to a colourless solution (1), to produce a pale pink solution (1).
(d) A orange solution is added to a colourless solution (1), and will remain an orange colour (1).

Marking Criteria	Marks Allocated	
\bullet Correct observations for reactants		$1-4$
\bullet Correct observations for products		$1-4$
	Total	$\mathbf{8}$

1.42
[5 marks]
To distinguish between the three compounds small amounts of acidified potassium permanganate could be added to samples of each of the three bottles (1). In the bottle containing butan-1-ol, it will be observed that the purple solution is added to a colourless solution to produce a pale pink solution that has a sour taste (1). In the bottle containing methylpropan-2-ol it will be observed that the purple solution is added to a colourless solution and the solution will remain an orange colour (1). In the bottle containing pentan-2-ol, the purple solution is added to a colourless solution to produce a pale pink solution. Using these observations each of the bottle can be identified by matching these predicted observations to the actual observations. (1)

Marking Criteria	Marks Allocated	
\bulletAcidified potassium permanganate can be added to samples of each of the three bottles		
-The predicted observations can be matched to the actual observations to determine which compound is in each bottle	$1-2$	
$\bullet \quad$ Correct observations for each of the bottles	Total	$1-3$
	$\mathbf{5}$	

Carboxylic Acids and Esterification: Qs 1.61, 1.62, 1.71, 1.72

1.61
[7 marks]
(a) $\mathrm{CH}_{\mathbf{3}} \mathrm{CH}_{2} \mathrm{CH}_{\mathbf{2}} \mathrm{COOH}_{(\mathbf{a q})}+\mathrm{NaOH}_{(\mathbf{a q})} \rightarrow \mathrm{Na}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)_{2(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$ (1)
(b) $2 \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{\mathbf{3}}\right) \mathrm{COOH}_{(a q)}+\mathrm{Na}_{\mathbf{2}} \mathrm{CO}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{Na}\left(\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COO}\right)_{(a q)}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(a q)}$
(c)

(d) $\mathbf{6} \mathbf{C H}_{\mathbf{3}} \mathbf{C H}_{\mathbf{2}} \mathbf{C O O H}_{(\boldsymbol{a q})}+\mathbf{2 C r} \boldsymbol{r s}_{(\boldsymbol{s})} \rightarrow 2 \mathrm{Cr}\left(\mathbf{C H}_{3} \mathrm{CH}_{2} \mathrm{COO}\right)_{(\text {aq })}+3 \mathrm{H}_{2(g)}$ (1)

Methyl Butanoate

(g)

1.62
[9 marks]
(a) Various tests could be used:

- A smell test (1) could be used where ethyl ethanoate would have a fruity smell (1) and butanoic acid would have no smell (1); or
- A piece of metal, metal carbonate, base etc. could be added to each beaker (1). For instance, if aluminium metal was added it would be observed that nothing would occur in the beaker with ethyl ethanoate (1), and in the beaker with butanoic acid the silver metal would dissolve and a colourless, odourless gas would be produced (1).
(b) The addition of an oxidising agent such as acidified potassium permanganate or acidified potassium dichromate to both beakers could be used (1). For instance, if acidified potassium dichromate was added to both beakers in the beaker with propanoic acid it would be observed that an orange solution is added to a colourless solution and the solution will remain orange (1). In the beaker with methanol it would be observed that an orange solution is added to a colourless solution and the solution will turn a deep green colour (1).
(c) Two tests could be used:
- A piece of metal, metal carbonate, base etc. could be added to each beaker (1). For instance if chromium metal was added it would be observed that nothing would occur in the beaker with butan-2-ol (1), and in the beaker with pentanoic acid the silver metal would dissolve and a deep green solution and colourless, odourless gas would be produced (1).
- The addition of an oxidising agent such as acidified potassium permanganate or acidified potassium dichromate to both beakers could be used (1). For instance, if acidified potassium permanganate was added to both beakers in the beaker with pentanoic acid it would be observed that a purple solution is added to a colourless solution and the solution will remain purple (1). In the beaker with butan-2-ol it would be observed that a purple solution is added to a colourless solution and the solution will turn a pale pink colour (1).

Marking Criteria	Marks Allocated	
\bullet Provides appropriate test	$1-3$	
\bullet States observations that will occur for the first compound		$1-3$
\bullet States observations that will occur for the second compound		$1-3$
		Total

Empirical Formula - Repetitive Questions Answers

Empirical Formula Calculations: Qs 2.1, 2.21, 2.22, 2.31, 2.32
2.11

1,4-butanediol
\qquad
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$ (1)
$\mathrm{C}_{3} \mathrm{H}_{6}$
\qquad
CH_{2} (1)

Benzene

CH (1)
\qquad

$$
\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}
$$

CH_{3}
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$ (1)
$\mathrm{C}_{10} \mathrm{H}_{22}$
$\mathrm{C}_{5} \mathrm{H}_{11}$ (1)

Propyl propanoate
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ (1)

2.21
(a)

$$
\begin{aligned}
\%(\boldsymbol{C}) & =\frac{m(C)}{m(\text { sample })} \times 100 \\
& =\frac{36.00}{50.00} \times 100 \\
& =72.0 \%
\end{aligned}
$$

(b)

$$
\begin{align*}
m(H) & =50.00-m(C)-m(O) \\
& =50.00-36.00-8.00 \\
& =6.00 \quad \text { (1) } \tag{1}\\
\%(\boldsymbol{H}) & =\frac{6.00}{50.00} \times 100 \\
& =12.0 \% \mathbf{(1)}
\end{align*}
$$

$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
$\mathrm{CH}_{2} \mathrm{O}$ (1)
(b)
(a)

$$
\begin{aligned}
\boldsymbol{n}\left(\boldsymbol{C O}_{2}\right) & =\frac{36.64}{44.01} \\
& =\mathbf{0 . 8 3 2 5 ~ m o l} \\
\boldsymbol{n}(\boldsymbol{C})= & n\left(\mathrm{CO}_{2}\right) \\
= & \mathbf{0 . 8 3 2 5} \mathbf{~ m o l} \\
\boldsymbol{m}(\boldsymbol{C})= & n M \\
= & 0.8325 \times 12.01 \\
= & 9.998 \mathrm{~g}
\end{aligned}
$$

$$
\%(C)=\frac{m(C)}{m(\text { sample })} \times 100
$$

$$
=\frac{9.998}{25.00} \times 100
$$

$$
\begin{equation*}
=39.99 \% \tag{1}
\end{equation*}
$$

(b)

$$
\begin{aligned}
n\left(H_{2} \mathrm{O}\right) & =\frac{15.00}{18.016} \\
& =0.8326 \mathrm{~mol} \\
n(H)= & n\left(H_{2} \mathrm{O}\right) \times 2 \\
= & 0.8326 \times 2 \\
= & 1.665 \mathrm{~mol} \\
m(H)= & n M \\
= & 1.665 \times 1.008 \\
= & 1.678 \mathrm{~g}
\end{aligned}
$$

$$
\%(\boldsymbol{H})=\frac{m(H)}{m(\text { Sample })} \times 100
$$

$$
=\frac{1.678}{25.00} \times 100
$$

$$
=6.71 \%
$$

(c)

$$
\begin{align*}
m(O) & =25.00-m(C)-m(H) \\
& =25.00-9.998-1.678 \\
& =13.324 \mathrm{~g} \tag{1}
\end{align*}
$$

(d)

	C	H	0
Mass	9.998 g	1.678 g	13.324 g
Moles	$\frac{9.998}{12.01}=0.8325 \mathrm{~mol}$	$\frac{1.678}{1.008}=1.665 \mathrm{~mol}$	$\frac{13.324}{16}=0.8328 \mathrm{~mol}$
Simple Ratio	$\frac{0.8325}{0.8325}=1$	$\frac{1.665}{0.8325}=2$	$\frac{0.8328}{0.8325}=1$
Whole Ratio	1	2	1

(1)
\therefore the empirical formula is $\mathrm{CH}_{2} \mathrm{O}$ (1)
(e) The sample must be a carboxylic acid because carboxylic acids react with sodium carbonate to form carbon dioxide (1). A possible structure and name is ethanoic acid:

Ethanoic acid (1)

Points to note: As the molecular formula is not known, any carboxylic acid could be drawn and named for part (e)
2.31

$$
\begin{align*}
& \text { Unknown }+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
& n\left(\mathrm{CO}_{2}\right)=1.238 \mathrm{~g}, m\left(\mathrm{H}_{2} \mathrm{O}\right)=0.6756 \mathrm{~g} \\
& \begin{aligned}
\boldsymbol{n}\left(\boldsymbol{C O}_{2}\right) & =\frac{1.238}{44.01} \\
& =\mathbf{0 . 0 2 8 1 3} \mathbf{~ m o l}
\end{aligned} \\
& \boldsymbol{n}(\boldsymbol{C})=n\left(\mathrm{CO}_{2}\right) \\
& =0.02813 \mathrm{~mol} \\
& \boldsymbol{m}(\boldsymbol{C})=n M \\
& =0.02813 \times 12.01 \\
& =0.3378 \text { g (1) } \\
& n\left(H_{2} O\right)=\frac{0.6756}{18.016} \\
& =0.0375 \mathrm{~mol} \\
& n(H)=n\left(\mathrm{H}_{2} \mathrm{O}\right) \times 2 \\
& =0.0375 \times 2 \\
& =0.0750 \mathrm{~mol} \\
& m(H)=n M \\
& =0.0750 \times 1.008 \\
& =0.0756 \mathrm{~g} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
m(O) & =0.5634-m(C)-m(H) \\
& =0.5634-0.3378-0.0756 \\
& =0.150 \mathrm{~g}
\end{aligned}
$$

	C	H	0
Mass	0.3378	0.0756	0.150
Moles	$\frac{0.3378}{12.01}=0.02813 \mathrm{~mol}$	$\frac{0.0756}{1.008}=0.750 \mathrm{~mol}$	$\frac{0.150}{16.00}=0.009375$
Simple Ratio	$\frac{0.02813}{0.009375}=3$	$\frac{0.0750}{0.009375}=8$	$\frac{0.009375}{0.009375}=1$
Whole Ratio	3	8	1

\therefore the empirical formula is $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$
2.32

$$
\begin{aligned}
& \text { Unknown }+\mathrm{O}_{2(\mathrm{~g})} \xrightarrow{\rightarrow} \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
& n\left(\mathrm{CO}_{2}\right)=1.238 \mathrm{~g} \quad m\left(\mathrm{H}_{2} \mathrm{O}\right)=0.6756 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{n}\left(\mathrm{CO}_{2}\right) & =\frac{1.866}{44.01} \\
& =\mathbf{0 . 0 4 2 4} \mathbf{~ m o l}
\end{aligned}
$$

$$
\boldsymbol{n}(\boldsymbol{C})=n\left(\mathrm{CO}_{2}\right)
$$

$$
=0.0424 \mathrm{~mol}
$$

$$
\boldsymbol{m}(\boldsymbol{C})=n M
$$

$$
=0.0424 \times 12.01
$$

$$
=0.5092 g
$$

$$
\begin{aligned}
n\left(H_{2} \mathrm{O}\right) & =\frac{0.7641}{18.016} \\
& =0.0424 \mathrm{~mol} \\
n(H)= & n\left(\mathrm{H}_{2} \mathrm{O}\right) \times 2 \\
= & 0.0424 \times 2 \\
= & 0.0848 \mathrm{~mol} \\
m(H)= & n M \\
= & 0.0848 \times 1.008 \\
= & 0.08548 \mathrm{~g} \quad(\mathbf{1})
\end{aligned}
$$

$$
\begin{aligned}
m(O) & =0.7647-m(C)-m(H) \\
& =0.7647-0.5092-0.08548 \\
& =0.170 \mathrm{~g}
\end{aligned}
$$

	C	H	0
Mass	0.5092	0.0855	0.170
Moles	$\frac{0.5092}{12.01}=0.0424 \mathrm{~mol}$	$\frac{0.08548}{1.008}=0.0848 \mathrm{~mol}$	$\frac{0.170}{16.00}=0.01063 \mathrm{~mol}$
Simple Ratio	$\frac{0.0424}{0.01063}=3.989$	$\frac{0.0848}{0.01063}=7.977$	$\frac{0.01063}{0.01063}=1$
Whole Ratio	4	8	1

\therefore the empirical formula is $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
(1)

$$
\begin{aligned}
& \text { Unknown Compound } \\
& \\
& \begin{aligned}
\boldsymbol{n}\left(\boldsymbol{C O}_{2}\right) & =\frac{15.08}{44.01} \\
& =\mathbf{0 . 3 4 2 6 ~ \mathbf { m o l }} \\
\boldsymbol{n (C)}= & n\left(\mathrm{CO}_{2}\right) \\
= & \mathbf{0 . 3 4 2 6} \mathbf{~ m o l} \\
\boldsymbol{m (C)} & =n M \\
= & 0.3426 \times 12.01 \\
= & \mathbf{4 . 1 1 4} \mathbf{g} \quad \text { (1) }
\end{aligned}
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{NH}_{3(a q)}+ \mathbf{H C l}_{(a q)} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}_{(a q)} \\
& \boldsymbol{n}(\mathrm{HCl})=\boldsymbol{c V} \\
&=1 \times 0.00571 \\
&=\mathbf{0 . 0 0 5 7 1} \mathbf{~ m o l} \\
& n\left(\mathrm{NH}_{3}\right)_{10 \mathrm{~mL}}=n(\mathrm{HCl}) \\
&=0.00571 \mathrm{~mol}(\mathbf{1}) \\
& n\left(\mathrm{NH}_{3}\right)_{100 \mathrm{~mL}}=n\left(\mathrm{NH}_{3}\right)_{10 \mathrm{~mL}} \times \frac{100}{10} \\
&=0.00571 \times 10 \\
&=0.0571 \mathrm{~mol} \text { (1) } \\
& \boldsymbol{n (N)}=n\left(\mathrm{NH}_{3}\right) \\
&=\mathbf{0 . 0 5 7 1} \mathbf{~ m o l}(\mathbf{1}) \\
& \boldsymbol{m (N)}=n M \\
&=0.0571 \times 14.01 \\
&=\mathbf{0 . 8 0 0 g} \\
& m(\mathbf{O})=0.7647-m(\mathrm{C})-m(\mathrm{H})-m(\mathrm{~N}) \\
&= 7.49-4.114-0.7485-0.800 \\
&=1.828 \mathrm{~g} \quad \mathbf{(1)} \tag{1}
\end{align*}
$$

	C	H	N	0
Mass	4.114 g	0.7485 g	0.800 g	1.828 g
Moles	$\frac{4.114}{12.01}=0.3425 \mathrm{~mol}$	$\frac{0.7485}{1.008}=0.7426 \mathrm{~mol}$	$\frac{0.800}{14.01}=0.0571 \mathrm{~mol}$	$\frac{1.828}{16.00}=0.1143 \mathrm{~mol}$
Simple Ratio	$\frac{0.3425}{0.0571}=5.998$	$\frac{0.7426}{0.0571}=13.005$	$\frac{0.0571}{0.0571}=1$	$\frac{0.1143}{0.0571}=2.002$
Whole Ratio	6	13	1	2

\therefore the empirical formula is $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{2}$ (1)

$$
\begin{align*}
\boldsymbol{n}\left(\boldsymbol{C O}_{2}\right) & =\frac{6.285}{44.01} \\
& =\mathbf{0 . 1 4 2 8 ~ m o l} \tag{1}\\
\boldsymbol{n}(\boldsymbol{C})= & n\left(\text { CO }_{2}\right) \\
= & \mathbf{0 . 1 4 2 8 ~ m o l} \\
\boldsymbol{m}(\boldsymbol{C})= & n M \\
= & 0.1428 \times 12.01 \\
= & 1.715 \mathrm{~g}
\end{align*}
$$

$$
\begin{array}{rlrl}
n\left(\boldsymbol{H}_{2} \mathrm{O}\right) & =\frac{3.22}{18.016} & \boldsymbol{n}\left(\boldsymbol{N}_{2}\right) & =\frac{0.500}{2 \times 14.01} \\
& =0.1787 \mathrm{~mol} \\
& & =\mathbf{0 . 0 1 7 8 4} \mathbf{~ m o l}
\end{array}
$$

	C	H	N
Mass	1.715 g	0.360 g	0.500 g
Moles	$\frac{1.715}{12.01}=0.1428 \mathrm{~mol}$	$\frac{0.360}{1.008}=0.3571 \mathrm{~mol}$	$\frac{0.500}{14.01}=0.03569 \mathrm{~mol}$
Simple Ratio	$\frac{0.1428}{0.03569}=4.001$	$\frac{0.3571}{0.03569}=10.006$	$\frac{0.03569}{0.03569}=1$
Whole Ratio	4	10	1

(1)
\therefore the empirical formula is $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}$
(1)
2.51
[10 marks]
(a)

$$
\begin{aligned}
& \text { Unknown Compound }+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
& m\left(\mathrm{CO}_{2}\right)=3.147 \mathrm{~g} \\
& \mathrm{~m}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.417 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{n}\left(\boldsymbol{C O}_{2}\right) & =\frac{3.147}{44.01} \\
& =0.07151 \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{n}(\boldsymbol{C}) & =n\left(\mathrm{CO}_{2}\right) \\
& =\mathbf{0 . 0 7 1 5 1} \mathbf{~ m o l}
\end{aligned}
$$

$$
\boldsymbol{m}(\boldsymbol{C})=n M
$$

$$
=0.07151 \times 12.01
$$

$$
=0.8588 g
$$

$$
=0.1573 \times 1.008
$$

$$
=0.1586 \mathrm{~g}
$$

(1) $\quad n(N)=n\left(\mathrm{NH}_{3}\right)$
$=0.0143 \mathrm{~mol}(1)$

$$
\boldsymbol{m}(N)=n M
$$

$$
=0.0143 \times 14.01
$$

$$
=0.2003 g
$$

$$
\begin{align*}
m(O) & =0.7647-m(C)-m(H)-m(N) \\
& =1.675-0.8588-0.1586-0.2003 \\
& =0.4573 \mathrm{~g} \quad \text { (1) } \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& n\left(H_{2} O\right)=\frac{1.417}{18.016} \\
& \mathrm{NH}_{3(a q)}+\mathbf{H C l}_{(a q)} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}_{(a q)} \\
& =0.07865 \mathrm{~mol} \\
& n(H)=n\left(H_{2} O\right) \times 2 \\
& n(H C l)=c V \\
& =2 \times 0.00715 \\
& =0.07865 \times 2 \\
& =0.1573 \mathrm{~mol} \\
& m(H)=n M
\end{aligned}
$$

	C	H	N	0
Mass	0.8588 g	0.1586 g	0.2003 g	0.4573 g
Moles	$\frac{0.8588}{12.01}=0.07151 \mathrm{~mol}$	$\frac{0.1586}{1.008}=0.1573 \mathrm{~mol}$	$\frac{0.2003}{14.01}=0.0143 \mathrm{~mol}$	$\frac{0.4573}{16.00}=0.02858 \mathrm{~mol}$
Simple Ratio	$\frac{0.07151}{0.0143}=5.001$	$\frac{0.1573}{0.0143}=11$	$\frac{0.0143}{0.0143}=1$	$\frac{0.02858}{0.0143}=1.999$
Whole Ratio	5	11	1	2

\therefore the empirical formula is $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2}$ (1)
(b) The amino acid is valine (1):

(1)

Valine (Val)
2.52
(a)

$$
\begin{aligned}
& \text { Unknown Compound }+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
& m\left(\mathrm{CO}_{2}\right)=4.709 \mathrm{~g} \\
& \mathrm{~m}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.735 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{n}\left(\mathrm{CO}_{2}\right) & =\frac{4.709}{44.01} \\
& =\mathbf{0 . 1 0 7 0} \mathbf{~ m o l}
\end{aligned}
$$

$$
\begin{aligned}
n\left(H_{2} O\right) & =\frac{1.735}{18.016} \\
& =0.0963 \mathrm{~mol}
\end{aligned}
$$

$$
n(H)=n\left(H_{2} O\right) \times 2
$$

$$
=0.0963 \times 2
$$

$$
\begin{aligned}
m(H) & =n M \\
& =0.1926 \times 1.008 \\
& =0.1941 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
n(H C l) & =c V \\
& =1 \times 0.02140 \\
& =0.03176 \mathbf{m o l}
\end{aligned}
$$

$$
=0.1926 \mathrm{~mol}
$$

$$
\begin{aligned}
n\left(\mathrm{NH}_{3}\right) & =n(\mathrm{HCl}) \\
& =0.03176 \mathrm{~mol}
\end{aligned}
$$

$$
\%(H)=\frac{0.1941}{2.464} \times 100
$$

$$
=7.88 \%
$$

$$
\begin{aligned}
\boldsymbol{n}(N) & =n\left(\mathrm{NH}_{3}\right) \\
& =0.03176 \mathrm{~mol} \\
\boldsymbol{m}(\mathrm{~N}) & =n M \\
& =0.03176 \times 14.01 \\
& =0.445 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
\%(N) & =\frac{0.445}{3.653} \times 100 \\
& =\mathbf{1 2 . 1 8} \%
\end{aligned}
$$

$$
\begin{aligned}
\%(\boldsymbol{O}) & =100-\%(C)-\%(H)-\%(N) \\
& =100-52.16-7.88-12.18 \\
& =27.78 \%
\end{aligned}
$$

	C	H	N	0
Mass in $\mathbf{1 0 0 g}$	52.16 g	7.88 g	12.18 g	27.78 g
Moles	$\frac{52.16}{12.01}=4.343 \mathrm{~mol}$	$\frac{7.88}{1.008}=7.817 \mathrm{~mol}$	$\frac{12.18}{14.01}=0.8693 \mathrm{~mol}$	$\frac{27.78}{16.00}=1.736 \mathrm{~mol}$
Simple Ratio	$\frac{4.343}{0.8693}=4.996$	$\frac{7.817}{0.8693}=8.992$	$\frac{0.8693}{0.8693}=1$	$\frac{1.736}{0.8693}=1.997$
Whole Ratio	5	9	1	2

\therefore the empirical formula is $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}$ (1)
(c) The amino acid is proline (1)

2.53

$$
\begin{aligned}
\text { Unknown Compound }+\mathrm{O}_{2(g)} & \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
& \begin{array}{l}
\mathrm{m}\left(\mathrm{CO}_{2}\right)=1.913 \mathrm{~g} \\
\mathrm{~m}\left(\mathrm{H}_{2} \mathrm{O}\right)=2.115 \mathrm{~g}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{n}\left(\boldsymbol{C O}_{2}\right) & =\frac{2.861}{44.01} \\
& =0.06501 \mathrm{~mol} \\
\boldsymbol{n}(\boldsymbol{C}) & =n\left(C O_{2}\right) \\
& =0.06501 \mathrm{~mol} \\
\boldsymbol{m}(\boldsymbol{C}) & =n M \\
& =0.06501 \times 12.01 \\
& =0.7808 \mathrm{~g} \quad \text { (1) }
\end{aligned}
$$

$\begin{aligned} \%(\boldsymbol{C}) & =\frac{0.7808}{1.50} \times 100 \\ & =52.05 \%\end{aligned}$

$$
\begin{align*}
n\left(H_{2} O\right) & =\frac{2.115}{18.016} \\
& =0.1174 \mathrm{~mol} \\
n(H) & =n\left(H_{2} \mathrm{O}\right) \times 2 \\
& =0.1174 \times 2 \\
& =0.2348 \mathrm{~mol} \\
m(H) & =n M \\
& =0.2348 \times 1.008 \\
& =0.2367 \mathrm{~g} \quad \mathbf{1}) \\
\%(H) & =\frac{0.2367}{1.80} \times 100 \\
& =13.15 \% \quad \text { (1) } \tag{1}
\end{align*}
$$

$$
\begin{aligned}
\%(\boldsymbol{O}) & =100-\%(C)-\%(H) \\
& =100-52.05-13.15 \\
& =\mathbf{3 4 . 8 0} \%
\end{aligned}
$$

	C	H	0
Mass in $100 g$	52.05	13.15	34.80
Moles	$\frac{52.05}{12.01}=4.334 \mathrm{~mol}$	$\frac{13.15}{1.008}=13.046 \mathrm{~mol}$	$\frac{34.80}{16.00}=2.175 \mathrm{~mol}$
Simple Ratio	$\frac{4.334}{2.175}=1.9926$	$\frac{13.046}{2.175}=5.998$	$\frac{2.175}{2.175}=1.000$
Whole Ratio	2	6	1

(1)
(1)
\therefore the empirical formula is $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ (1)

Polymers, Proteins and Soaps Answers

Problem Set 13 Progressive Answers - Polymers, Proteins and Soaps

Problem Set 13 - Polymers, Proteins and Soaps Progressive Questions Answers

Concept 1

Polymers - Progressive Questions Answers

Addition and Condensation Polymerisation: Q1, Q2, Q3, Q4
1.
(a) Alkene functional group (1)

Marking Criteria	Marks Allocated
\bullet Alkene functional group or carbon-to-carbon double bond	1
Total	1

(b)
(i)

(ii)

Polytetrafluoroethene (1)
(iii)

(c)

(1)

Points to note: If the monomers have complicated names like this one, you won't be expected to write its name.
(a) Some differences between addition and condensation polymerisation include but are not limited to:

- Addition polymerisation uses a single monomer, condensation polymerisation uses two different of monomers (1).
- Addition polymerisation has no by-products, condensation polymerisation reactions water as a by-product (1).
- Addition polymerisation requires a double bond to be broken, condensation polymerisation requires two functional groups to react with one another (1)

Marking Criteria	Marks Allocated
\bullet States three appropriate differences	$1-3$
	Total

(b)
(i) Cannot undergo condensation polymerisation - chloroethene monomer is not appropriate (1)
(ii) Can undergo condensation polymerisation (1)

Ethanedioc acid
Propandiol
(iii) Cannot undergo condensation polymerisation - ethene monomer is not appropriate (1)

Marking Criteria	Marks Allocated			
$\bullet \quad$ Correctly states whether condensation polymerisation can/cannot occur	$1-3$			
Total				$\mathbf{3}$

(c)

Monomers: Hexandioc acid and 1,6-hexandiamine (1)

Marking Criteria	Marks Allocated	
\bullet Circles amide linkages	$1-2$	
\bullet Monomers: hexandioc acid and 1,6-hexandiamine	Total	$\mathbf{2}$

[^0]3.
(a)
(i) Condensation polymerisation (1)

Monomers:

3,3-dimethyl-1,6-pentandiamine (1)
(ii) Addition polymerisation (1)

Monomers:

(iii) Condensation polymerisation (1)

Monomers:

Chloroethene (1)

Benzene-1,4-dioic acid (1)

Butanedioc acid (1)

Ethandiol (1)

Marking Criteria	Marks Allocated			
\bullet Correct type of polymerisation stated	$1-3$			
\bullet Correct monomers drawn and named	$1-5$			
Total				$\mathbf{8}$

(b)

Marking Criteria	Marks Allocated	
\bullet Draws correct reactants		
\bullet • Draws correct products		
\bullet Equation balanced correctly (either using ' n ' or actual numbers)		$1-3$
	Total	$\mathbf{3}$

4.

(a)
n

Propene
(b)

(c)

Kevlar
(2)

Marking Criteria	Marks Allocated	
\bullet Correct reactant and products drawn	$1-3$	
\bullet Equations balanced correctly	$1-3$	
	Total	6

Applications of Polymers: Q5, Q6, Q7, Q8
5.
[10 marks]

Requirement	Suggested Polymer	Polymer Structure
(i) Very high strength, lowfriction material for joints	Ultra-high molecular weight polyethene (1)	 (1)
(ii) Ductile and high strength fibres for tendons to control fingers	Nylon/Kevlar (1)	Kevlar:
(iii) High density, low transparency material to form the bones	High density polyethene (1)	
(iv) Soft, flexible material to cover joints	Low density polyethene (1)	
(v) High strength material that can be heated and moulded for the skin layer	Polyethene terephthalate (1)	

Marking Criteria	Marks Allocated
\bullet States correct polymer	$1-5$
\bullet Draws appropriate polymer structure	$1-5$
Total	$\mathbf{1 0}$

Points to note: For polyethene you can draw short, medium and long chains to show the different structures of polyethene instead.
6.
[9 marks]
(a) The hardness and boiling point of both LDPE and HDPE can be attributed to the strength of the dispersion forces between their molecules (1). LDPE is relatively weak and has a low boiling point, due to the significant presence of significant branching, which means the LDPE molecules pack less efficiently and have less surface area for dispersion force interaction (1). In contrast, HDPE has much longer molecules with little branching which means they have a greater surface area for dispersion force interaction (1). As a result, HDPE has a higher boiling point and hardness because more energy is required to separate the molecules than in LDPE (1).

Low Density Polyethene = Weak dispersion forces

(1)

High Density Polyethene = Moderately strong dispersion forces

Marking Criteria	Marks Allocated		
- Hardness and boiling point are dependent on the strength of the			
intermolecular forces		\quad	- LDPE has significant branching and therefore has a reduced surface area
:---			
for dispersion force interaction			
-HDPE has long chains with little branching and therefore have a larger surface area for dispersion force interaction - HDPE has a higher hardness and boiling point because more energy is required to separate the molecules			
- Appropriate LDPE diagram			
- Appropriate HDPE diagram			

(b) As the length of a polymer chain increases, the dispersion forces that between the molecules increase from there being more electrons to form temporary dipoles (1). Its dispersion forces also become stronger from there being a greater surface area to allow for intermolecular interaction (1). As a result as the polymer chain length increases, the polymers strength increases because more energy is required to break apart the molecules (1).

Marking Criteria	Marks Allocated
\bullet	$\begin{array}{l}\text { Dispersion forces increase with an increasing chain length from an } \\ \text { increase in electrons being able to form temporary dipoes }\end{array}$
\bullet	$1-3$
Dispersion forces also increase with increasing chain length from there	
being a greater surface area for intermolecular interaction	

- Strength increases with increasing chain length because more energy is required to break the intermolecular forces	
Total	3

7.

(a) Covalent bonds (1)

Marking Criteria	Marks Allocated	
\bullet Covalent bonds	1	
	Total	1

(b) In order for a polymer to be able to be heated and moulded, the molecules need to be able to be shifted out of their locations by applying force (1). When there is extensive cross-links formed between the PET molecules these strong covalent bonds lock the molecules into place and prevent the PET from being moulded without breaking (1). As a result, the cross-linking means that PET cannot be heated and moulded into the skin that needs to wrap around the joints (1).

Marking Criteria	Marks Allocated
• Molecules need to be able to move to be moulded	
-Cross-linking locks the molecules into place and prevents the PET from being moulded without breaking This means the PET cannot be heated and moulded to from the skin that wraps around the joints	$1-3$
	Total

8.

[4 marks]
The polymer Jamie is using would be nylon or Kevlar (1). As shown in the diagram below, nylon and Kevlar form strong hydrogen bonds between their chains (1). This hydrogen bonding significantly increases the strength of nylon whilst still leaving it ductile, making it suitable to be drawn into fibres for the tendons (1).

Extensive hydrogen bonding $=$ Very strong nylon fibres

Marking Criteria	Marks Allocated
\bullet Nylon or Kevlar could be used	
\bullet Nylon and Kevlar form many hydrogen bonds	
• These hydrogen bonds make it strong but ductile, making it suitable for	
the tendons	

Concept 2

Proteins - Progressive Questions Answers

Addition and Condensation Polymerisation: Q1, Q2, Q3, Q4
1.
(a)

(2)

General Structure for α-amino acid

Marking Criteria	Marks Allocated
• Draws α-amino acid structure	$1-2$
Draws R group	$\mathbf{2}$
Total	

(b)

(i) α-amino acid not α-amino acid	(ii)	(iii) α-amino acid not α-amino acid
(iv)	(v)	(vi) α-amino acid not α-amino acid

Marking Criteria	Marks Allocated	
\bullet Circles correct option	$1-6$	
	Total	6

2.

[18 marks]
(a)
(i)

(ii)

(iv)

Marking Criteria	Marks Allocated
\bullet Draws correct acidic form	$1-4$
\bullet Draws correct neutral form	$1-4$
\bullet Draws correct basic form	$1-4$
Total	$\mathbf{1 2}$

(b)
(i)

(ii)

(iii)

(c) α-amino acid naturally occur in their zwitterion form when in solution (1). As a result, they form strong ionic bonds with other amino acids to create a crystalline solid (1). These strong ionic bonds require a much larger amount of heat energy than the intermolecular forces between similar sized organic molecules, thus giving α amino acid higher boiling points (1).

Marking Criteria	Marks Allocated
- α-amino acids are naturally in their zwitterion form	
- They form strong ionic bonds	
- These strong ionic bonds require more heat energy than intermolecular	
forces, giving α-amino acids higher boiling points	

(a) The two products are: polypeptides and water. (2)

Marking Criteria	Marks Allocated	
\bullet Polypeptides		$1-2$
\bullet Water	Total	$\mathbf{2}$

(b)
(i)

(2)
(ii)

(iii)

(iv)

(v)

Pro-Thr-Met

Marking Criteria	Marks Allocated	
\bullet Draws correct polymer structure	$1-5$	
\bullet Includes water molecules and provides correct name	$1-5$	
	Total	$\mathbf{1 0}$

4.

[6 marks]
(a)
(i)

(ii)

(iii)

(a)
(i)

(ii)

Trp-Tyr-Phe-Cys-Trp
(iii)

Asn-His-Iso-Leu-Pro
(iv)

(b) Joining five monomers requires four peptide linkages, so four moles of water are produced.

$$
\begin{aligned}
n\left(\mathrm{H}_{2} \mathrm{O}\right) & =4 \mathrm{~mol}(1) \\
m\left(\mathrm{H}_{2} \mathrm{O}\right) & =n M \\
& =4 \times(2.016+16) \\
m\left(\mathrm{H}_{2} \mathrm{O}\right) & =72.064 g
\end{aligned}
$$

Proteins Structure and Function: Q6, Q7, Q8, Q9, Q10

6.

[8 marks]

(a) The primary structure of a protein refers to the sequence of amino acids that are present within a protein (1). The primary structure is important, because the identity and order of the amino acids will determine the interactions that occur between the side chains of the amino acids (1), which will determine the overall shape of the protein (1). The shape of a protein is what determines its function, so the primary structure is crucial in determining the function of the protein (1)

Marking Criteria	Marks Allocated	
\bullet Primary structure is the sequence of amino acids		
\bullet The sequence of amino acids determines the interactions between side		
chains in the protein		
- The interactions determine the shape of the protein		
-The shape of the protein determines the protein's function, so the primary structure determines the function	$1-4$	
	Total	$\mathbf{4}$

(b) The sequence begins from the end with the amine group. (1)

Marking Criteria	Marks Allocated	
\bullet Amine $/ \mathrm{NH}_{2}$ group	1	
	Total	$\mathbf{1}$

(c) Trp-Tyr-Phe-Cys-Trp-Asn-His-Ile-Leu-Pro-His-Glu-Ile-Ala-Val-Gly-Arg-Ser-Thr-Trp-Asp (3)

Marking Criteria	Marks Allocated			
\bullet Correctly writes sequence (deduct one mark for each error)	$1-3$			
Total				$\mathbf{3}$

7.

(a) The secondary structure of a protein refers to the hydrogen bonding between the polar $\mathbf{C}=\mathbf{0}$ and $\mathrm{N}-\mathrm{H}$ groups in the backbone of the protein, forming either an alpha (α) helix structure or beta (β) pleated sheets (1). These interactions lead to proteins having different shapes, which affects its function. (1)

Marking Criteria	Marks Allocated
\bulletSecondary structure is the hydrogen bonding in the backbone of the protein, forming α-helix structure or β-pleated sheets \bullet This affects the shape of the protein and therefore its function	$1-2$
	Total

(b) Hydrogen bonding (1), between the polar $\mathbf{C}=\mathbf{0}$ and $\mathrm{N}-\mathbb{H}$ groups in the backbone of the polypeptides (in the peptide linkages themselves). (1)

Marking Criteria	Marks Allocated
$\bullet \quad$ Secondary structure is the hydrogen bonding in the backbone of the	
protein, forming α-helix structure or β-pleated sheets	$1-2$
\bullet This affects the shape of the protein and therefore its function	Total

8.

(a) The $\boldsymbol{\alpha}$-helix structure form due to hydrogen bonds between $\mathbf{C}=\mathbf{O}$ and $\mathrm{N}-\boldsymbol{H}$ groups in the same peptide chain (1), whereas β-pleated sheets result from hydrogen bonds between $\mathbf{C}=\mathbf{0}$ and $\mathrm{N}-\mathrm{H}$ groups in different peptide chains (1).
$\left.\begin{array}{|c|c|}\hline \text { Marking Criteria } & \text { Marks Allocated } \\ \hline \bullet & \alpha \text {-helix structure occur from hydrogen bonds in the same peptide chains } \\ \bullet & \beta \text {-pleated sheets occur from hydrogen bonds in different peptide chains }\end{array}\right] 1-2$
(b) α-Helix Structure β-pleated Sheets

Marking Criteria	Marks Allocated
\bullet Sketches hydrogen bonds in both scenarios	$1-2$
\bullet Labels hydrogen bonds	
\bullet Draws general protein backbone structure	
	Total

(a) The tertiary structure of a protein refers to the overall three-dimensional shape of a protein (1), which is dependent on the different types of interactions that occur between the side chains (1). The shape of the protein determines the function of the protein, so the tertiary structure determines the function of a protein (1)

Marking Criteria	Marks Allocated
\bulletTertiary structure refers to the overall three dimensional shape of the protein	
- This is dependent on the interactions between side chains	
- The 3D shape determines the function of the protein, so tertiary	
structure determines the function of the protein	

(b) The types of bonding that can occur are:

- Dispersion forces
- Dipole-dipole forces
- Hydrogen bonding
- Disulfide bridges
- Ionic bonding

Marking Criteria	Marks Allocated
\bulletDispersion forces, dipole-dipole forces, hydrogen bonding, disulfide bridges and ionic bonding	$1-5$
	Total

(c)

Interaction	Type of Interaction
A	Dispersion forces (1)
B	lonic bonding (1)
C	Disulfide bridge (1)
D	Hydrogen bonding (1)
E	Dipole-dipole forces (1)

Marking Criteria	Marks Allocated
\bullet States correct type of interaction	$1-5$
	Total

10.

[21 marks]
(a)
(i) Disulfide bridges, dipole-dipole forces, dispersion forces (1)
(ii) Hydrogen bonding, dipole-dipole forces, dispersion forces (*also accept ionic bonding if they assume zwitterion form) (1)
(iii) Dispersion forces (1)
(iv) Hydrogen bonding, dipole-dipole forces, dispersion forces (1)
(v) Dispersion forces (1)
(vi) Dispersion forces (*also accept no interactions because no side chains) (1)
(vii) Hydrogen bonding, dipole-dipole forces, dispersion forces (*also accept ionic bonding if they assume zwitterion form) (1)
(viii) Dipole-dipole forces, dispersion forces (1)

Marking Criteria	Marks Allocated
\bullet States correct types of interactions	$1-8$
	Total

(b) The replacement of all the Glycine residues with Asparagine will mean that hydrogen bonding and dipoledipole interactions will now also be able to form at these side chains (1). When added to water, more energy will be released from the solute-solvent interactions to break the solute-solute and solvent-solvent interactions (1). Therefore, protein F will now be more soluble in water (1).

| Marking Criteria | Marks Allocated |
| :--- | :---: | :---: |
| • Hydrogen bonds and dipole-dipole forces will now also be formed at | |
| these side chains | |
| • More energy will be released from the solute-solvent interactions to | |
| break the solute-solute and solvent-solvent intearctions | |
| Protein F will be more soluble in water | |$\quad 1-8$

(c) Changing the primary structure of a protein changes the sequence of amino acids in the chain (1), which alters the type and strength of the side chain interactions that occurs within the protein molecules (1). This can be seen through the change made in part (b), where replacing glycine with asparagine means the side chains now form dipole-dipole forces and hydrogen bonds making the interactions stronger (1). Stronger side-chain interactions require more heat energy to be broken, thus giving it a higher boiling point (1).

Marking Criteria	Marks Allocated
- Altering the primary structure changes the amino acid sequence - This affects the type and strength side chain interactions - Refers to part (b) and explains how side chain intermolecular forces change - Explains how changing the intermolecular interactions affects the boiling point by requiring more/less energy to break them	$1-4$
Total	4

(d) The Protein Data Bank is a worldwide, free and updated database (1) that allows scientists worldwide to view a protein's structure (1). It informs users about primary, secondary and tertiary protein structure (1).

Marking Criteria	Marks Allocated	
\bullet	The Protein Data Bank is a world wide database with all the recorded	
protein structures		
\bullet	It allows scientists to view different protein structures	
\bullet	Includes the primary, secondary and tertiary structures	$1-3$
	Total	$\mathbf{3}$

Concept 3

Soaps and Detergents - Progressive Questions Answers

Soaps and Detergents: Q1, Q2, Q3, Q4, Q5, Q6

Repetitive: $1.1 \rightarrow 1.2$ (3 questions)
1.

Marking Criteria	Marks Allocated
\bullet Correctly identifies compound	$1-4$
\bullet Circles carboxylate and sulfonate groups on soap and detergent	$1-2$
Total	$\mathbf{6}$

2.

[4 marks]
(a)

Marking Criteria	Marks Allocated
• Draws correct structure of arachidic acid	$1-2$
Total	$\mathbf{2}$

(b)

Marking Criteria	Marks Allocated
• Draws correct structure of reactants and products	$1-2$
$\mathbf{T o t a l}$	$\mathbf{2}$

3.

[13 marks]
(a)

Non-polar tail
Polar head

Marking Criteria	Marks Allocated
\bullet Circles non-polar tai and polar head	$1-2$
$\mathbf{T o t a l}$	$\mathbf{2}$

(b) When there is a grease stain, the soap micelle positions itself around the grease stain (1). The ionic polar head remains on the outside, being dissolved in the water from forming strong hydrogen bonds (1) and ion-dipole forces (1). The non-polar tail dissolves in the grease stain because they are both large hydrocarbons with similar sized dispersion forces (1). Vigorous agitation of the mixture allows the micelles to be released from the object (1). Once released, the grease particles are in a stable micelle arrangement, allowing them to be suspended in the water and can be washed away (1).

| Marking Criteria | Marks Allocated |
| :--- | :---: | :---: |
| - Soap forms a micelle arrangement around the grease stain | |
| - The ionic polar head forms strong hydrogen bonds with water (allowing it | |
| to dissolve) | |
| - The ionic polar head also forms ion-dipole forces with water (allowing it | |
| to dissolve) | |
| - The non-polar tail forms dispersion forces with the grease stain (allowing | |
| it to dissolve) | |$\quad 1-6$

(c)

Marking Criteria	Marks Allocated			
\bullet Draws correct structure of reactants and products	$1-2$			
Total				$\mathbf{2}$

(d) Soaps are made of sodium stearate ions, which the loosely bonded sodium ion is removed when the soap is dissolved in solution (1). This leaves an 0^{-}ion which accepts a \boldsymbol{H}^{+}ion from water, acting as a Brønsted-Lowry base (1). This decrease in the \boldsymbol{H}^{+}concentration, decreases the pH of the solution and makes it basic (1)

Marking Criteria	Marks Allocated
\bullet	Sodium ion is removed when soap is dissolved in water
\bullet	O^{-}ion accepts a H^{+}ion from water, acting as a Brønsted-Lowry base
\bullet	$1-3$
	The decrease in the H^{+}concentration, makes the solution basic

4.

(a) Hard water is water that contains Ca^{2+} and $M g^{2+}$ ions in high concentrations (1). When soap is used in hard water it will precipitate with these ions (e.g. $\left.\mathrm{Ca}_{(a q)}^{2+}+2 \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COO}_{(a q)}^{-} \rightarrow \mathrm{Ca}\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COO}\right)_{2(s)}\right)$ (1). This scum means that the soap is wasted so it does not clean as effectively (1).

Marking Criteria	Marks Allocated	
\bullet	Hard water is water that contains Ca^{2+} and Mg^{2+} ions in high	
concentrations		
\bullet The soap will precipitate with these ions		
\bullet	The scum formed means soap is wasted so it doesn't clean as effectively	
	Total	$\mathbf{3}$

(b) Detergents are a synthetic alternative to soaps (1). Detergents are different to soaps in the following ways:

- Has a sulfonate head rather than carboxylate head (1)
- Has a benzene group in the non-polar tail (1)
- Do not form precipitates in hard water (1)
- Are produced synthetically (1)

Marking Criteria	Marks Allocated		
\bullet Appropriate definition of detergents	1		
\bullet States three differences	$1-3$		
$\mathbf{4}$			

Problem Set 13 - Polymer, Proteins and Soaps Repetitive Questions

Concept 1

Polymers - Repetitive Questions Answers

Addition and Condensation Polymerisation: Qs 1.11, 1.31
(a)
(i)

Polyethene (1)
(ii)

Polytetrafluoroethene (1)
(iii)

Polypropene (1)
(b)
(i) Monomer: Cyanoethene (1)

(1)
(ii) Monomer: 1,2-dichloroethene (1)

(1)

Marking Criteria	Marks Allocated
• Monomer linkages circled	$1-2$
Correct monomer name	Total
$\mathbf{2}$	

(a) Polyesters have are formed from a diol and dicarboxylic acid, whereas polyamides are formed from a diamine and dicarboxylic acid (1).

Marking Criteria	Marks Allocated
• Polyesters are formed from diol and dicarboxylic acid, polyamides are	
formed from diamine and dicarboxylic acid (or other appropriate difference)	Total
	$\mathbf{1}$

Points to note: Other appropriate differences can be said such as polyesters have an ester linkage whereas polyamides have an amide linkage.
(b)
(i)

(2)
(ii)

(iii)

Marking Criteria	Marks Allocated	
\bullet Correct reactants and products drawn		$1-3$
\bullet Equation balanced		$1-3$
	Total	$\mathbf{6}$

(c)
(i) Monomers: Pentanedioc acid and 1,3-propanediamine (1)

(ii) Monomers: 1,4-benzenedioc acid and 1,4-butanediol (1)

(1)

Applications of Polymers: Qs 1.51, 1.61, 1.71
1.51
[10 marks]

Polymer	Property and how its structure links to this	Application
Teflon/Polytetrafluoroethene	Chemically inert/low friction from having highly electronegative fluorine atoms (1)	Non-stick coatings on pans (1)
Polyethylene terephthalate	High strength from strong dipole-dipole forces and dispersion forces (1)	Fibres in clothing (1)

1.61
[7 marks]
(a) The properties of LDPE and HDPE can be attributed to the strength of the dispersion forces between their molecules (1). LDPE is relatively weak, due to the significant presence of significant branching, which means the LDPE molecules pack less efficiently and have less surface area for dispersion force interaction (1). In contrast, HDPE has much longer molecules with little branching which means they have a greater surface area for dispersion force interaction and is therefore stronger (1). As a result, HDPE is used for applications such as rigid plastic bottles, pipes, containers etc. (1) whereas LDPE is for soft plastic bottles, cable insulation etc. (1)

\left.	Marking Criteria	Marks Allocated
- Properties are dependent on the strength of the intermolecular forces		
- LDPE has significant branching and therefore has a reduced surface area		
for dispersion force interaction		
- HDPE has long chains with little branching and therefore have a larger		
surface area for dispersion force interaction		$\right] 1-3$

(b) In order for a polymer to be able to be heated and moulded (recycled), the molecules need to be able to be shifted out of their locations by applying force (1). When there is extensive cross-links formed between the polyethene molecules, the strong covalent bonds lock the molecules into place and prevent the polyethene from being moulded without breaking (1). As a result, the cross-linking means that polyethene cannot be heated and moulded, and therefore cannot be recycled (1).

Marking Criteria	Marks Allocated
- Molecules need to be able to move to be moulded - Cross-linking locks the molecules into place and prevents the polyethene from being moulded without breaking - This means the crosslinked polyethene cannot be heated and moulded and therefore cannot be recycled	1-3
Total	3

1.81
[5 marks]
Kevlar forms strong hydrogen bonds between its chains (1). This hydrogen bonding significantly increases the strength of Kevlar whilst still leaving it ductile, making it suitable to be drawn into fibres for the sails and bullet proof vests (1).

Marking Criteria	Marks Allocated
- Kevlar forms many hydrogen bonds between its molecules - These hydrogen bonds make Kevlar both strong and ductile, making it suitable to be drawn into fibres for sails and bullet proof vests	1-2
- Correctly draws Kevlar molecules - Draws appropriate hydrogen bonds between Kevlar molecules	1-2
Total	4

Concept 2

Proteins - Repetitive Questions Answers

Amino Acids, Zwitterions and Polypeptides: Qs 2.11, 2.21, 2.41, 2.42

2.21
[10 marks]
(a) A zwitterion is a molecule that contains positive and negative charges but has no overall charge (1).

Marking Criteria	Marks Allocated
\bulletZwitterion contains positive and negative charges but has no overall charge	1
	Total

(b)

Marking Criteria	Marks Allocated	
\bullet Draws main chain form correctly	$1-4$	
\bullet Draws side chain form correctly		$1-4$
	Total	$\mathbf{8}$

(a)
(i)

(ii)

(iii)

(iv)

(v)

(b) Joining three monomers requires two peptide linkages, so two moles of water are produced.

$$
\begin{aligned}
& n\left(H_{2} \mathrm{O}\right)=2 \mathrm{~mol} \\
& m\left(\mathrm{H}_{2} \mathrm{O}\right)=n M \\
&=2 \times(2.016+16) \\
& m\left(\mathrm{H}_{2} \mathrm{O}\right)=36.032 \mathrm{~g}
\end{aligned}
$$

(a)

(b)

(c)

(a) The primary structure of a protein refers to the sequence of amino acids that are present within a protein (1). The primary structure is important, because the identity and order of the amino acids will determine the interactions that occur between the side chains of the amino acids, which will determine the overall shape of the protein (1). The shape of a protein is what determines its function, so the primary structure is crucial in determining the function of the protein (1)

Marking Criteria	Marks Allocated
- Primary structure is the sequence of amino acids - The sequence of amino acids determines the interactions between side chains in the protein, which determines the protein shape - The shape of the protein determines the protein's function, so the primary structure determines the function	1-3
Total	3

2.61
[10 marks]
(a)

Types of bonds formed	α-helix	β-pleated sheets
Hydrogen bonds (1)	Hydrogen bonds (1)	
Location of bonds Shape of structure formed	Between $\mathbf{C}=\mathbf{0}$ and $\mathrm{N}-\mathrm{H}$ groups in the same peptide chain (1)	Between $\mathbf{C}=\mathbf{0}$ and $\mathrm{N}-\mathrm{H}$ groups in the different peptide chains (1)

(b)

β-pleated Sheets

26

Marking Criteria	Marks Allocated	
\bullet Sketches hydrogen bonds in both scenarios	$1-2$	
\bullet Labels hydrogen bonds		$1-2$
• Draws general protein backbone structure	Total	$\mathbf{4}$

2.101
[15 marks]
(a) The tertiary structure of a protein refers to the overall three-dimensional shape of a protein (1), which is dependent on the different types of interactions that occur between the side chains (1). The shape of the protein determines the function of the protein, so the tertiary structure determines the function of a protein (1). The types of interactions that can occur are: dispersion forces, dipole-dipole forces, hydrogen bonding, disulfide bridges and ionic bonding (1).

Marking Criteria	Marks Allocated
- Tertiary structure refers to the overall three dimensional shape of the	
protein	
-This is dependent on the interactions between side chains - The 3D shape determines the function of the protein, so tertiary structure determines the function of the protein - Types of interactions: dispersion forces, dipole-dipole forces, hydrogen bonding, disulfide bridges and ionic bonding	$1-4$
	Total

(b)
(i) Dispersion forces (1)
(ii) Dispersion forces (1)
(iii) Hydrogen bonding, dipole-dipole forces, dispersion forces (*also accept ionic bonding if they assume zwitterion form) (1)
(iv) Disulfide bridges, dipole-dipole forces, dispersion forces (1)
(v) Hydrogen bonding, dipole-dipole forces, dispersion forces (1)
(vi) Hydrogen bonding, dipole-dipole forces, dispersion forces (*also accept ionic bonding if they assume zwitterion form) (1)
(vii) Dipole-dipole forces, dispersion forces (1)
(viii) Hydrogen bonding, dipole-dipole forces, dispersion forces (1)

Marking Criteria	Marks Allocated	
\bullet States correct types of interactions		$1-8$
	Total	$\mathbf{8}$

(c) The Protein Data Bank is a worldwide, free and updated database (1) that allows scientists worldwide to view a protein's structure (1). It informs users about primary, secondary and tertiary protein structure (1).

Marking Criteria	Marks Allocated	
\bullet The Protein Data Bank is a world wide database with all the recorded		
protein structures		
- It allows scientists to view different protein structures		
\bullet Includes the primary, secondary and tertiary structures	$1-3$	
	Total	$\mathbf{3}$

Concept 3

Soaps and Detergents - Repetitive Questions Answers

Soaps and Detergents: Qs 3.31, 3.41

3.31
[7 marks]
(a)

Marking Criteria	Marks Allocated
\bullet Draws water molecule showing hydrogen bonding	$1-2$
Draws water molecule showing ion-dipole forces	Total
	$\mathbf{2}$

(b)

Micelle
When soap molecules are dissolved, they form a spherical structure known as a micelle. In a micelle, the nonpolar tails point inwards towards the centre because they are hydrophobic (1), while the polar heads point outwards towards the water because they are hydrophilic (1).

Marking Criteria	Marks Allocated
- Draws appropriate micelle diagram	
- The micelle is a spherical arrangement of the soap molecules	
- In the micelle, the non-polar tails point inwards because they are	
hydrophobic,the polar head points outwards towards the water because	
they are hydrophilic	

(c)

(a) Water is polar and grease/oil stains are large non-polar carbon chains, meaning the grease/oil stains will be insoluble in water (1).

Marking Criteria	Marks Allocated	
\bullet Grease/oil stains are insoluble in water		1
	Total	$\mathbf{1}$

(b) Bore water is hard water, which contains Ca^{2+} and Mg^{2+} ions in high concentrations (1). When soap is used in hard water it will precipitate with the ions: $\mathrm{Ca}_{(a q)}^{2+}+2 \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COO}_{(a q)}^{-} \rightarrow \mathrm{Ca}\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COO}\right)_{2(s)}$ and $\boldsymbol{M} \boldsymbol{g}_{(a \boldsymbol{q})}^{2+}+2 \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COO}_{(a q)}^{-} \rightarrow \mathbf{M g}\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COO}\right)_{2(s)}$ (1). This scum means that the soap is wasted so it does not clean as effectively (1).

Marking Criteria	Marks Allocated
\bullet	Hard water is water that contains Ca^{2+} and Mg^{2+} ions in high
concentrations	
\bullet The soap will precipitate with these ions	
\bullet The scum formed means soap is wasted so it doesn't clean as effectively	$1-3$
	Total

(c) Detergents do not precipitate with ions in hard water, so they can clean more effectively in hard water (1). When there is an oil stain on a frying pan, the detergent micelle positions itself around the oil stain (1). The ionic polar sulfonate head remains on the outside, being dissolved in the water from forming strong hydrogen bonds (1) and ion-dipole forces (1). The non-polar tail dissolves in the oil stain because they are both large hydrocarbons with similar sized dispersion forces (1). Vigorous agitation of the mixture allows the micelles to be released from the object (1). Once released, the oil particles are in a stable micelle arrangement, allowing them to be suspended in the water and can be washed away (1).

Point to note: Your diagram does not have to be this complicated, you could just draw the micelle and be awarded the marks if it matches your explanation

Marking Criteria	Marks Allocated
- \quad Detergent forms a micelle arrangement around the oil stain	
-The ionic polar head forms strong hydrogen bonds with water (allowing it to dissolve)	
-The ionic polar head also forms ion-dipole forces with water (allowing it to dissolve)	$1-6$
-The non-polar tail forms dispersion forces with the oil stain (allowing it to dissolve)	

- Agitation releases the mixture from the object
- The oil and detergent are in a micelle arrangement, allowing it to be suspended in water and washed away
- Appropriate diagram to support explanation
Total 7

Chapter 8

Chemical Synthesis Answers

Problem Set 14 Progressive Answers - Chemical Synthesis 1
Problem Set 14 Repetitive Answers - Chemical Synthesis 17

Problem Set 14 - Chemical Synthesis Progressive Questions

Concept 1

Chemical Synthesis - Progressive Questions Answers

Haber Process and Contact Process: Q1, Q2, Q3
1.
(a)

Reaction	Optimum Temperature	Optimum Pressure
$\begin{gathered} \text { (i) } \mathbf{C H}_{4(g)}+\boldsymbol{H}_{2} \mathbf{O}_{(l)} \rightleftharpoons C \mathrm{CO}_{(g)}+3 \mathrm{H}_{2(g)} \\ \Delta \boldsymbol{H}=\mathbf{2 0 6 k J} / \mathbf{m o l} \end{gathered}$	High Moderate Low	High Moderate Low
(ii) $\boldsymbol{P}_{4(l)}+\mathbf{5 O}_{\mathbf{2}(\mathrm{g})} \rightleftharpoons 2 \mathrm{P}_{2} \mathrm{O}_{5(\mathrm{~g})} \Delta \boldsymbol{H}<\mathbf{0}$	High Moderate Low	High Moderate Low
(iii) $\mathrm{NH}_{4} \mathrm{NO}_{2(s)}+420 \mathrm{~kJ} \rightleftharpoons \mathrm{~N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(g)}$	High Moderate Low	High Moderate Low
$\text { (iv) } \begin{aligned} 4 \mathrm{NH}_{3(g)}+5 \mathrm{O}_{2(g)} & \rightleftharpoons 4 \mathrm{NO}_{(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(g)} \\ \Delta \mathrm{H} & <\mathbf{0} \end{aligned}$	High Moderate Low	High Moderate Low

Marking Criteria	Marks Allocated			
\bullet Correct optimum temperature and pressure conditions circled	$1-4$			
Total				$\mathbf{4}$

(b) A higher temperature will favour the forward endothermic reaction in order to cool down the system, which will increase the reaction yield (1). A higher temperature will also increase the reaction rate from an increase in the collision frequency and proportion of successful collisions (1). An increase in pressure will favour the reverse reaction due to a $1: 4$ gaseous molar ratio, which will decrease the reaction yield (1). However, a higher
pressure will increase the reaction rate from an increase in the collision frequency (1). Therefore, to find a compromise between yield and reaction rate, a moderate pressure is used (1).

Marking Criteria	Marks Allocated
- A higher temperature will increase the yield from a favoured forward endothermic reaction - A higher temperature will increase the reaction rate from an increase in collision frequency and proportion of successful collisions - A pressure increase will decrease the yield from a favoured reverse reaction due to a 1:4 gaseous molar ratio - A pressure increase will increase the reaction rate from an increase in the collision frequency - Stating a moderate pressure must be used as a compromise	$1-5$
Total	5

2.

[11 marks]
(a)

Student	Change made	Effect on reaction rate	Effect on Yield	Correct or Incorrect Prediction (V or X)
Sarah	Increase temperature	$\widehat{\imath}$	\checkmark	\times (1)
Janet	Remove catalyst	\checkmark	\checkmark	X (1)
Jamie	Decrease pressure	\checkmark	\checkmark	$\checkmark(1)$
Dylan	Decrease reactant concentrations	\checkmark	\widehat{V}	\times (1)
Alexa	Decrease temperature	$\sqrt{6}$	\uparrow	X (1)

\therefore Sarah and Janet will/ will not join the trio. [1]

Points to note: For the answers that were incorrect:

- Sarah's prediction: an increase in temperature will also increase the yield as the forward reaction will be favoured
- Janet's prediction: Removal of the catalyst will have no effect on the yield as the forward and reverse reaction rates decrease equally, so neither is favoured
- Dylan's prediction: Decreasing the reactant concentrations will decrease the yield as the reverse reaction will be favoured.

Marking Criteria	Marks Allocated
- Correctly states if prediction is correct or incorrect	$1-5$
\bullet States Sarah and Janet will join the trio	1
Total	$\mathbf{6}$

(b) To optimise the reaction rate and yield a high temperature and high pressure should be used (1). A higher temperature will favour the forward endothermic reaction in order to cool down the system, which will increase the reaction yield (1). A higher temperature will also increase the reaction rate from an increase in the collision frequency and proportion of successful collisions (1). A higher pressure will favour the forward reaction due to a 2 : 1 gaseous molar ratio, which will increase the reaction yield (1). A higher pressure will also increase the reaction rate from an increase in the collision frequency (1).

Marking Criteria	Marks Allocated
- To optimise reaction rate and yield a high temperature and high pressure should be used - A higher temperature will increase the yield from a favoured forward endothermic reaction - A higher temperature will increase the reaction rate from an increase in collision frequency and proportion of successful collisions - A pressure increase will increase the yield from a favoured forward reaction due to a $2: 1$ gaseous molar ratio - A pressure increase will increase the reaction rate from an increase in the collision frequency	$1-5$
Total	5

3.

[9 marks]
(a)

Time	Change made
T_{1}	Volume increased/pressure decrease (1)
T_{2}	Catalyst added (1)
T_{3}	Temperature increase (1)

Marking Criteria	Marks Allocated		
\bullet Correct changes determined	$1-3$		
$\mathbf{3}$			

(b) When the temperature of the system is decrease, the system will act to partially oppose this temperature decrease by favouring the exothermic forward reaction in order to heat up the system (1). A favoured forward reaction means the yield of ammonia will increase from more of it being produced (1).

Marking Criteria	Marks Allocated
\bullet	Increasing the temperature will favour the endothermic reverse reaction
\bullet	A favoured reverse reaction will decrease the yield ammonia from it
being consumed	

(c) Catalysts are only specific to certain reactions (1). As a result when the vanadium oxide catalyst is removed and the iron oxide catalyst is added it is not specific to the Haber process so it will have no effect (1). Thus removing
the vanadium oxide catalyst will mean the reaction rate decreases from the proportion of successful collisions decreasing from the loss of an alternate pathway with a lower activation energy (1). However, the yield will remain unaffected because the forward and reverse reaction rates decrease equally so there is no favoured reaction (1).
Point to note: This question should say that the reaction rate increases, because the iron oxide catalyst is actually specific to the Haber Process. However, based on the information of this question you should just assume that the iron oxide catalyst is not specific to the Haber Process.

Marking Criteria	Marks Allocated						
- Catalysts are specific to certain reactions							
- The iron oxide catalyst is not specific to this process so it has no effect							
- Removing the vanadium oxide catalyst will decrease the reaction rate							
from a decrease in the proportion of successful collisions from an							
increase in activation energy (from the loss of the catalysed pathway)	$1-4$						
- The yield will remain unaffected as no reaction is favoured							
Total							$\mathbf{4}$

4.

(a)

Equation 1×2
Equation 2
Equation 3×2
$2 \boldsymbol{S}_{(l)}+2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{2(\mathrm{~g})}$ $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}$

Equation 4×2	$2 \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7(l)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 4 \mathrm{H}_{2} \mathrm{SO}_{4(l)}$

$$
\begin{gather*}
2 \mathrm{~S}_{(l)}+2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{2(g)} \tag{1}\\
28 \theta_{2(g)}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 28 \sigma_{3(\mathrm{~g})} \\
28 \sigma_{3(g)}+2 \mathrm{H}_{2} \mathrm{SO}_{4(l)} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{~S} \theta_{7(l)}^{2} \\
\frac{2 \mathrm{H}_{2} \mathrm{~S}_{2} \sigma_{7(l)}}{}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 2 \mathrm{KH}_{2} \mathrm{SO}_{4(l)} \tag{1}\\
\hline 2 \mathrm{~S}_{(\mathrm{l})}+3 \mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \tag{1}\\
\hline
\end{gather*}
$$

Marking Criteria	Marks Allocated
- Balances equations correctly	
- Cancels reactants/products correctly	$1-3$
- States correct overall equation: $2 \mathrm{~S}_{(l)}+3 \mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$	
Total	$\mathbf{3}$

(b) Step 2 of the contact process is a reversible reaction meaning the conditions must be optimised to achieve the highest reaction rate and yield before equilibrium is established (1). To optimise the reaction rate and yield a high temperature (1) and high pressure should be used (1).
Points to note: In real life a low pressure is used as the increase in yield and reaction rate is not justified by the cost of operating at high pressures.

Marking Criteria	Marks Allocated		
\bullet Step 2 is a reversible reaction so conditions must be optimised to			
optimise yield and reaction rate before equilibrium is established			
\bullet A high temperature should be used			
\bullet A high pressure should be used		\quad	
:---			

(c)

Time	Change made	Effect on Reaction Rate (\uparrow or \downarrow)
T_{1}	Temperature increased	$\uparrow \quad$ (1)
T_{2}	Pressure increased	$\uparrow \quad$ (1)
T_{3}	$V_{2} O_{5}$ catalyst added	$\uparrow \quad$ (1)

Marking Criteria	Marks Allocated
\bullet States correct effect on reaction rate	$1-3$
Total	$\mathbf{3}$

(d) When the temperature is increased, the average kinetic energy of the particles increases meaning the collision frequency and proportion of successful collisions increases for both forward and reverse reactions, thus increasing the reaction rate (1). There will be a greater increase in the proportion of successful collisions in the endothermic reverse reaction thus creating a net reverse reaction which decreases the yield (1). Therefore, a compromise is made between the reaction rate and yield thus a moderate temperature is selected (1). When the pressure is increased, the collision frequency increases for both forward and reverse reactions, thus increasing the reaction rate (1). There will be a greater increase in the collision frequency in the forward reaction due to the $\mathbf{3 : 2}$ gaseous molar ratio thus creating a net forward reaction which increases the yield (1). Thus a high pressure is selected (1).

| Marking Criteria | Marks Allocated |
| :--- | :---: | :---: |
| - A temperature increase will increase the collision frequency and | |
| proportion of successful collisions, increasing the reaction rate | |
| -The proportion of successful collisions will increase more for the
 endothermic reverse reaction, decreasing the yield | |
| - Thus a moderate temperature is used | |
| - A pressure increase will increase the collision frequency, increasing the | |
| reaction rate | |
| - The collision frequency will increase more for the forward reaction due | |
| to a 3:2 gaseous molar ratio, increasing the yield | |
| - Thus a high pressure is used | |$\quad 1-6$

Points to note: A catalyst only affects the reaction rate, not the yield. Thus there is no change at T_{3}

Marking Criteria	Marks Allocated
From T_{1} to E_{1} : - Correct curvature and orientation for all curves to reach equilibrium at E_{1}	1
From T_{2} to E_{2} : - Instantaneous spike in all concentration curves at T_{2}, proportional to 2:1:2 ratio - Correct curvature and orientation for all curves to reach equilibrium at E_{1}	1-2
From T_{3} to E_{3} : - Continuation of equilibrium lines	1
- Equilibrium lines from E_{1} to T_{2}, E_{2} to T_{3} and E_{3} onwards	1
Total	5

Ethyl Ethanoate Production: Q5, Q6

5.

[8 marks]

Statement	True (V)	False (X)
"The overall reaction equation is: $\mathrm{CH}_{2} \mathrm{CH}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CH}_{3} \mathrm{COOH}_{(g)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} "$		X (1)
Explanation (for the box you ticked): The overall equation should be $\mathrm{CH}_{2} \mathrm{CH}_{2(\mathrm{~g})}+\mathrm{CH}_{3} \mathrm{COOH}_{(g)} \rightleftharpoons$ $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3(\mathrm{~g})}$ since the water vapour molecules cancel each other out (1)		
"For reaction 1, increasing the temperature of the reaction chamber will increase the rates of both the forward and reverse reactions but the reverse reaction rate will increase more"	\checkmark (1)	
Explanation (for the box you ticked): The proportion of successful collisions for the reverse reaction will increase more since it is endothermic, thus this statement is correct (1).		

"The rate of reaction in step $\mathbf{2}$ is determined by the rate of reaction in step $\mathbf{1}$, when it is assumed that ethanoic acid is at a maximum concentration."
(1)

Explanation (for the box you ticked): Since the second reaction is dependent on the ethanol produced in the first reaction, when the ethanoic acid is at full concentration, the second reaction should occur at the same rate as the first, meaning that this statement is true (1).
"An acidic catalyst such as sulfuric acid is used in step 2 in order to increase the reaction rate and yield of ethyl ethanoate."

Explanation (for the box you ticked): The use of a catalyst does not have an impact on the yield of ethyl ethanoate since the forward and reverse reaction rates are increased equally. (1)

Marking Criteria	Marks Allocated			
\bullet Correct true or false box is ticked	$1-4$			
\bullet Appropriate explanation provided for box ticked	$1-4$			
Total				$\mathbf{8}$

6.

[16 marks]
(a) The first step will remain the same (1), but the ethanoic acid in the second step must be changed to propanoic acid (1).

Marking Criteria	Marks Allocated
\bullet The reactants in the first stage will remain unchanged	
\bulletThe ethanoic acid in the second step will need to be changed to propanoic acid	Total
	$\mathbf{2}$

(b) When the temperature of a system is decreased, according to Le Chatelier's Principle, the system will act to partially oppose this temperature decrease by favouring the forward exothermic reaction in order to heat up the system (1). With a favoured forward reaction, the yield will increase. When the pressure of the system is decreased, the system will act to partially oppose this change by favouring the reverse reaction due to a 2 : 1 gaseous molar ratio (1), which will decrease the reaction yield (1).

Marking Criteria	Marks Allocated
\bullet A temperature decrease will favour the forward exothermic reaction	
\bullet A favoured forward reaction will increase the yield	
- A pressure decrease will favour the reverse reaction due to a $2: 1$	
gaseous molar ratio	
- A favoured reverse reaction will decrease the yield	$1-4$
	Total

(c)

Time	Change made to reaction 1	Effect on Concentration of Ethanol $(\uparrow$ or $\downarrow)$
T_{1}	Addition of $\mathrm{CH}_{2} \mathrm{CH}_{2}$	$\uparrow(1)$
T_{2}	Pressure decreased	$\downarrow(1)$

Points to note: This question can be confusing and you really need to think about it (it is a good critical thinking question).

- For the table just focus on the step 1 reaction and use LCP to determine the concentration of ethanol will increase or decrease.
- For the graph, you essentially need to sketch the effect of an ethanol concentration increase or decrease

Marking Criteria	Marks Allocated
- Correct effect on ethanol concentration stated for table	$1-3$
From \boldsymbol{T}_{1} to E_{1} : - Instantaneous spike in ethanol concentration curve at T_{1} - Correct curvature and orientation for all curves to reach equilibrium at E_{1}	$1-2$
From \boldsymbol{T}_{2} to \boldsymbol{E}_{2} : - Instantaneous drop in ethanol concentration curve at T_{2} - Correct curvature and orientation for all curves to reach equilibrium at E_{2}	$1-2$
From \boldsymbol{T}_{3} to E_{3} : - Instantaneous spike in ethanol concentration curve at T_{1} - Correct curvature and orientation for all curves to reach equilibrium at E_{3}	$1-2$
- Equilibrium lines from E_{1} to T_{2}, E_{2} to T_{3} and E_{3} onwards	1
Total	$\mathbf{1 0}$

Ethanol and Biodiesel Production: Q7, Q8, Q9, Q10

7.

[12 marks]
(a) Green Chemistry is an ideology based on twelve principles that aim to promote processes and design products that minimise the use and generation of hazardous substances and wastes (1).

Marking Criteria	Marks Allocated
\bullet Provides brief statement about the purpose of green chemistry	1
Total	$\mathbf{1}$

(b)

Factor	Optimum condition	Explanation using LCP
Temperature	High	When the temperature of a system is increased, according to Le Chatelier's Principle, the endothermic reverse reaction will be favoured (1). A favoured reverse reaction will decrease the yield, so a moderate temperature must be used (1).
Pressure	Moderate	
Moderate	The reaction has a $\mathbb{1}: \mathbb{1}$ gaseous molar ratio meaning that neither side is favoured when the pressure is changed (1). The reaction rate is increased when the pressure is increased, so a high pressure is optimum (1).	

Marking Criteria	Marks Allocated	
\bullet	Circles optimum condition	$1-2$
\bullet	Applies LCP to determine which reaction is favoured	$1-2$
\bullet Explain how this affects yield and reaction rate	$1-2$	
	Total	6

(c) This statement is false (1). While the reaction rate does increase from an increase in the proportion of successful collisions, the yield is not impacted because the forward and reverse reaction rates increase equally. (1)

Marking Criteria	Marks Allocated
\bullet The statement is false	
\bulletYield does not change because the forward and reverse reaction rates increase equally	$1-2$
	Total

(d) Some disadvantages of using hydration to produce ethanol over fermentation are:

- It operates at high temperatures which requires a large energy input (1)
- It operates at high pressures which requires a large energy input (1)
- The reaction uses ethene from crude oil which is a non-renewable resource (1)

Marking Criteria	Marks Allocated			
\bullet States three appropriate disadvantages	$1-3$			
Total				$\mathbf{3}$

8.

[13 marks]
(a)

Yeast enzymes

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(a q)} \rightarrow 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{(a q)}+2 \mathrm{CO}_{2(g)} \quad \Delta \boldsymbol{H}=-\mathbf{9 2 k J}
$$

Marking Criteria	Marks Allocated	
\bullet States equation		$1-2$
\bullet Enzyme: yeast enzymes	Total	$\mathbf{2}$

(b)

Marking Criteria	Marks Allocated
\bullet Draws appropriate catalysed reaction line	1

(c) Advantages of enzymes over inorganic catalysts include but are not limited to:

- Enzymes are most effective at biological temperatures which is cheaper (1)
- Enzymes are highly specific, so they will only catalyse a specific reaction (1)
- Enzymes can be reused (1)
- Enzymes are biodegradable (1)

Marking Criteria	Marks Allocated
\bullet States three appropriate advantages	$1-3$
Total	$\mathbf{3}$

(d) Despite higher temperatures allowing for a higher rate of reaction, enzymes are temperature and pH sensitive (1). If the temperature is raised above $37^{\circ} \mathrm{C}$, or pH above $3-5$, this enzyme risks being denatured (1).

Marking Criteria	Marks Allocated		
- Enzymes are temperature and pH sensitive	$1-2$		
- If they go outside of their temperature or pH ranges the enzymes can			
become denatured		\quad	$1-2$
:---:			
- Appropriate temperature and pH diagrams drawn			
Total			

(e) Reasons fermentation is in alignment with the green chemistry principles include but are not limited to:

- Fermentation occurs at biological temperatures which is more energy efficient (1)
- Yeast enzymes are biodegradable (1)
- The yeast enzymes can be reused (1)
- The reactants are made from renewable plant material (1)
- Yeast enzymes are specific and do not produce unwanted by-products (1)

Marking Criteria	Marks Allocated
\bulletStates three appropriate reasons why fermentation is in alignment with green chemistry principles	$1-3$
	Total

9.

[9 marks]
(a) The inorganic catalyst used is a strong base such as NaOH (1), and the enzyme lipase can also be used (1).

(b) When the temperature of the system is increased, the system will act to partially oppose this temperature increase by favouring the endothermic reverse reaction in order to cool down the system (1). A favoured reverse reaction means the yield of biodiesel will decrease from it being consumed (1). As a result a moderate temperature of $60^{\circ} \mathrm{C}$ is used to find a compromise between the reaction rate and yield (1).

Marking Criteria	Marks Allocated	
\bullet	Increasing the temperature will favour the endothermic reverse reaction	
- A favoured reverse reaction will decrease the yield biodiesel from it being		
consumed		

- A moderate temperature of $60^{\circ} \mathrm{C}$ is used to find a compromise between reaction rate and yield
(c) Biodiesel can often contain free fatty acids and if its concentration is too high then the base catalyst (e.g. NaOH) will react with the free fatty acids to create soap (1). This is an unwanted reaction and makes the resulting biodiesel require additional purification (1).

Marking Criteria	Marks Allocated	
\bullet Free fatty acids can react with the base catalyst to form soap	$1-2$	
\bullet	This makes the biodiesel require additional purification	Total
	$\mathbf{2}$	

10.

[11 marks]

Factor	Prediction using LCP
Temperature decrease	When the temperature of a system is decreased, according to Le Chatelier's Principle, the system will act to partially oppose this by favouring the exothermic forward reaction in order to heat up the system (1). With a favoured forward reaction the yield will increase from more biodiesel being produced(1).
Volume decrease	When the volume of the system is decreased, according to Le Chatelier's Principle, the system will act to partially oppose this by favouring no reaction due to a $4: 4$ molar ratio. With a no favoured reaction the yield will remain unaffected (1).
Replacing NaOH catalyst with lipase enzyme at temperature of $60^{\circ} \mathrm{C}$	When NaOH is changed to lipase, according to Le Chatelier's Principle no change to the yield will occur since catalysts have no effect on the yield of the system (1). At $60^{\circ} \mathrm{C}$ the lipase will also denature but the yield of the reaction will remain unaffected (1).
Decreasing methanol concentration	By decreasing the concentration of the methanol, according to Le Chatelier's principle the system will act to partially oppose this by favouring the reverse reaction to increase its concentration (1). With a favoured reverse reaction the yield will decrease from biodiesel being consumed (1).
Continually removing biodiesel as it is produced	Continually removing biodiesel as it is produced reduces the concentration of biodiesel (1). By decreasing the biodiesel concentration, according to Le Chatelier's principle the system will act to partially oppose this by favouring the forward reaction to increase its concentration (1). With a favoured forward reaction the yield will increase from more biodiesel being produced(1).

Marking Criteria	Marks Allocated							
\bullet	Uses LCP to determine which reaction will be favoured	$1-5$						
\bullet	Explains how yield will be affected based on which reaction is favoured	$1-5$						
\bullet	For final change states that continually removing biodiesel lowers its							
concentration			$\quad 1$	$\mathbf{1 1}$				
:---:	:---:	:---:	:---:	:---:				
Total								

Challenging Stoichiometry: Q1, Q2, Q3, Q4, Q5
1.
(a)

Equation 1×3	$12 \mathrm{NH}_{3(g)}+15 \mathrm{O}_{2(g)} \rightarrow 12 \mathrm{NO}_{(g)}+18 \mathrm{H}_{2} \mathrm{O}_{(g)}$
Equation 2×6	$12 \mathrm{NO}_{(g)}+6 \mathrm{O}_{2(g)} \rightarrow 12 \mathrm{NO}_{2(g)}$
Equation 3×4	$12 \mathrm{NO}_{2(g)}+4 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 8 \mathrm{HNO}_{3(a q)}+4 \mathrm{NO}_{(g)}$

$$
\begin{aligned}
12 \mathrm{NH}_{3(\mathrm{~g})}+{ }^{21} \mathrm{KO}_{2(\mathrm{~g})} & \rightarrow 12 \mathrm{NO}_{(\mathrm{g})}+14 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
12 \mathrm{NO}_{(\mathrm{g})}+60_{2(\mathrm{~g})} & \rightarrow 12 \mathrm{NO}_{(\mathrm{g})} \\
12 \mathrm{NO}_{2_{(g)}}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} & \rightarrow 8 \mathrm{HNO}_{3(\mathrm{aq})}+4 \mathrm{NO}_{(\mathrm{g})}
\end{aligned}
$$

$$
\begin{equation*}
\mathbf{1 2 N H}_{3(a q)}+21 \mathrm{O}_{2(g)} \rightarrow 14 \mathrm{H}_{2} \mathrm{O}_{(l)}+8 \mathrm{HNO}_{3(a q)}+4 \mathrm{NO}_{(g)} \tag{2}
\end{equation*}
$$

(b)

$$
\begin{align*}
n\left(\mathrm{HNO}_{3}\right) & =c V \\
& =1 \times 15 \\
& =15 \mathrm{~mol} \tag{1}\\
\boldsymbol{n}\left(\mathrm{NH}_{3}\right)= & n\left(\mathrm{HNO}_{3}\right) \times \frac{12}{8} \\
& =15 \times \frac{3}{2} \\
& =\mathbf{2 2 . 5} \mathbf{~ m o l} \quad \text { (1) } \\
\boldsymbol{V}\left(\mathbf{N H}_{3}\right)= & \frac{n R T}{P} \\
= & \frac{22.5 \times 8.314 \times(140+273.15)}{110} \\
= & \mathbf{7 0 3 L} \quad \mathbf{1}) \tag{1}
\end{align*}
$$

(c)

$$
\begin{align*}
\boldsymbol{n}\left(\boldsymbol{O}_{2}\right) & =\frac{V}{22.71} \\
& =\frac{500}{22.71} \\
& =\mathbf{2 2 . 0 2} \mathbf{~ m o l} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
\boldsymbol{n}\left(\mathrm{NH}_{3}\right) & =\frac{m}{M} \\
& =\frac{3 \times 10^{3}}{14.01+3 \times 1.008} \\
& =\mathbf{1 7 6 . 1} \mathbf{~ m o l}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{n}\left(\boldsymbol{O}_{2}\right)_{\text {required }}=n\left(\mathrm{NH}_{3}\right) \times \frac{21}{12} \\
&=176.1 \times \frac{21}{12} \\
&=308.2 \mathrm{~mol} \\
& n\left(\mathrm{O}_{2}\right)<n\left(\mathrm{O}_{2}\right)_{\text {required }} \\
& \therefore \boldsymbol{O}_{2} \text { is limiting reagent }
\end{aligned}
$$

(1)
$n\left(\mathrm{NH}_{3}\right)_{\text {required }}=n\left(\mathrm{O}_{2}\right) \times \frac{12}{21}$

$$
\begin{aligned}
& =22.02 \times \frac{12}{21} \\
& =12.58 \mathrm{~mol}
\end{aligned}
$$

$$
n\left(\mathrm{NH}_{3}\right)>n\left(\mathrm{NH}_{3}\right)_{\text {required }}
$$

$$
\therefore O_{2} \text { is limiting reagent }
$$

$$
\begin{aligned}
n\left(\mathrm{HNO}_{3}\right) & =n\left(\mathrm{O}_{2}\right) \times \frac{8}{21} \times \text { Efficiency } \\
& =22.02 \times \frac{8}{21} \times 0.96 \\
& =8.053 \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
m\left(\mathrm{HNO}_{3}\right) & =n M \\
& =8.053 \times(1.008+14.01+3 \times 16) \\
& =507.5 \mathrm{~g} \quad \text { (1) }
\end{aligned}
$$

(a)

Equation 1	$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3}$
Equation 2 $\times 2$	$2 \mathrm{NH}_{3(\mathrm{~g})}+2 \mathrm{HNO}$
$3(\mathrm{aq})$	

$$
\begin{array}{r}
\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftharpoons 2 \mathrm{NH}_{3} \\
\frac{2 \mathrm{NH}_{(g)}+2 \mathrm{HNO}_{3(a q)} \rightarrow 2 \mathrm{NH}_{4} \mathrm{NO}_{3(s)}}{} \begin{aligned}
\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)}+2 \mathrm{HNO}_{3(a q)} \rightarrow 2 \mathrm{NH}_{4} \mathrm{NO}_{3(s)}
\end{aligned} \\
) \tag{1}
\end{array}
$$

$$
\begin{align*}
\boldsymbol{n}\left(\boldsymbol{N}_{2}\right) & =\frac{P V}{R T} \\
& =\frac{8000 \times 3}{8.314 \times 1000} \tag{1}\\
& =\mathbf{2 . 8 8 7} \mathbf{~ m o l}
\end{align*}
$$

$$
\begin{array}{rlr}
\boldsymbol{n}\left(\mathrm{N}_{2}\right)_{\text {required }}=n\left(\mathrm{HNO}_{3}\right) \times \frac{1}{2} & & \boldsymbol{n}\left(\mathbf{H N O}_{3}\right)_{\text {required }}=n\left(\mathrm{~N}_{2}\right) \times \frac{2}{1} \\
=6 \times \frac{1}{2} & & =2.887 \times 2 \\
=3 \mathrm{~mol} & \text { Either } & =\mathbf{5 . 7 7 4} \mathbf{~ m o l} \\
n\left(\mathrm{~N}_{2}\right)<n\left(\mathrm{~N}_{2}\right)_{\text {required }} & \text { (1) } & n\left(\mathrm{HNO}_{3}\right)>n\left(\mathrm{HNO}_{3}\right)_{\text {required }} \\
\therefore N_{2} \text { is limiting reagent } & & \therefore \mathrm{N}_{2} \text { is limiting reagent }
\end{array}
$$

$$
\begin{align*}
n\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)_{\text {theoretical }} & =n\left(\mathrm{~N}_{2}\right) \times 2 \\
& =2.887 \times 2 \\
& =5.774 \mathrm{~mol} \tag{1}\\
m\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)_{\text {theoretical }} & =n \times M \\
& =5.774 \times(14.01 \times 2+1.008 \times 4+16 \times 3) \\
& =462.2 \mathrm{~g} \tag{1}\\
\text { Efficiency } & =\frac{m\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)_{\text {actual }}}{m\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)_{\text {theoretical }}} \times 100 \\
& =\frac{462.2}{500} \times 100 \\
& =92.4 \%
\end{align*}
$$

b)

$$
\begin{align*}
& n\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)=\frac{m}{M} \\
& =\frac{25 \times 10^{3}}{2 \times 14.01+4 \times 1.008+3 \times 16} \\
& =312.3 \mathrm{~mol} \\
& \text { (1) } \\
& \boldsymbol{n}\left(\mathrm{HNO}_{3}\right)=\frac{n\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)}{\% \text { Efficiency }} \times \frac{1}{1} \\
& =\frac{312.3}{0.92} \\
& =339.5 \mathrm{~mol} \\
& \text { (1) } \\
& {\left[\mathrm{HNO}_{3}\right]_{\text {dilute }}=\frac{c_{1} V_{1}}{V_{2}}} \\
& =\frac{1 \times 2.5}{12.5} \\
& =0.2 \mathrm{~mol} \mathrm{~L}^{-1} \tag{1}\\
& \boldsymbol{V}\left(\mathrm{HNO}_{3}\right)_{\text {dilute }}=\frac{n\left(\mathrm{HNO}_{3}\right)}{\left[\mathrm{HNO}_{3}\right]_{\text {dilute }}} \\
& =\frac{339.5}{0.2} \\
& =1698 \mathrm{~L} \text { (2) }
\end{align*}
$$

Points to note: Part (b) can be confusing because it is asking for the volume of diluted nitric acid. When dealing with questions that have tricky wording take time to establish what the question is actually asking and what information you are provided to help you get the answer.
3.
(a)

Equation 1×2	$2 \mathrm{~S}_{(\mathrm{l})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{2(\mathrm{~g})}$
Equation 2	$2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}$
Equation 3 $\times 2$	$2 \mathrm{SO}_{3(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$

$$
\begin{gather*}
2 \mathrm{~S}_{(l)}+2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{2(\mathrm{~g})} \\
2 \mathrm{SO}{ }_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 280_{3(\mathrm{~g})} \\
2 \mathrm{SO} \mathrm{~B}_{(\mathrm{g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \\
\hline 2 \mathrm{~S}_{(\mathrm{l})}+3 \mathrm{OO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{ll}} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \tag{2}\\
\hline
\end{gather*}
$$

(b)

$$
\begin{aligned}
\boldsymbol{n}(\boldsymbol{S}) & =\frac{m}{M} \\
& =\frac{10 \times 10^{6}}{32.07} \\
& =\mathbf{3 1 1 8 1 8} \mathbf{~ m o l}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{n}\left(\boldsymbol{O}_{2}\right) & =\frac{P V}{R T} \\
& =\frac{200 \times\left(2 \times 10^{6}\right)}{8.314 \times 600} \\
& =\mathbf{8 0 1 8 6} \mathbf{~ m o l}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{n}(\boldsymbol{S})_{\text {required }} & =n\left(O_{2}\right) \times \frac{2}{3} & n\left(\boldsymbol{O}_{2}\right)_{\text {required }} & =n(S) \times \frac{3}{2} \\
& =80186 \times \frac{2}{3} & & =311818 \times \frac{3}{2} \\
& =53457.3 \mathrm{~mol} & & =467727 \mathrm{~mol} \\
n(S) & >n(S)_{\text {required }} & \text { Either } & n\left(O_{2}\right)
\end{aligned}
$$

$$
\begin{align*}
n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)_{\text {theoretical }}= & \boldsymbol{n}\left(\boldsymbol{O}_{2}\right) \times \frac{2}{3} \\
& =35638.2 \mathrm{~mol} \tag{1}\\
\text { Energy } & =35638.2 \times 230 \\
& =8196786 \mathrm{KJ} \\
& =8196.8 \mathrm{MJ}
\end{align*}
$$

(1)
\therefore since $8196.8 \mathrm{MJ}>7000 \mathrm{MJ}$, the factory will burn down (1)
4.

$$
\begin{gather*}
\mathrm{CH}_{2} \mathrm{CH}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}_{(g)} \\
\frac{\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}}{(g)}+\mathrm{CH}_{3} \mathrm{COOH}_{(g)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(g)} \\
\frac{\mathrm{CH}_{2} \mathrm{CH}_{2(g)}+\mathrm{CH}_{3} \mathrm{COOH}_{(g)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3(g)}}{(1)} \tag{1}
\end{gather*}
$$

$$
\begin{aligned}
n\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right) & =\frac{P V}{R T} \\
& =\frac{800 \times 4000}{8.3414600} \\
& =\mathbf{6 4 1 . 5} \mathbf{~ m o l}
\end{aligned}
$$

$$
\begin{aligned}
n\left(\mathrm{CH}_{3} \mathrm{COOH}\right) & =\frac{V}{22.71} \\
& =\frac{6500}{22.71} \\
& =287.2 \mathrm{~mol}
\end{aligned}
$$

$$
\begin{align*}
\boldsymbol{n}\left(\mathbf{C H}_{2} \mathrm{CH}_{2}\right)_{\text {required }} & =n\left(\mathrm{CH}_{3} \mathrm{COOH}\right) \times \frac{1}{1} \\
& =\mathbf{2 8 7 . 2 \mathrm { mol } (\mathbf { 1) }}
\end{align*}
$$

\therefore since $5100 L>5000 L$, the chamber will crack and destroy the plant (1)
5.

$$
\begin{align*}
M(\text { Triglyceride }) & =57 \times 12.01+110 \times 1.008+6 \times 16 \\
& =891.45 \mathrm{~g} \mathrm{~mol}^{-1} \quad(\mathbf{1}) \tag{1}
\end{align*}
$$

$$
\begin{aligned}
\boldsymbol{n}(\text { Triglyceride }) & =\frac{m}{M} \times 0.97 \\
& =\frac{500 \times 10^{3}}{891.45} \times 0.97 \\
& =544.1 \mathrm{~mol} \quad(\mathbf{1})
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{n}\left(\mathrm{CH}_{3} \mathrm{OH}\right) & =c V \\
& =0.820 \times 1000 \\
& =\mathbf{8 2 0} \mathbf{~ m o l}
\end{aligned}
$$

[7 marks]

$$
\begin{array}{rlrl}
\boldsymbol{n}(\text { Triglyceride })_{\text {required }} & =n\left(\mathrm{CH}_{3} \mathrm{OH}\right) \times \frac{1}{3} & n\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{\text {required }} & =n(\text { Triglyceride }) \times 3 \\
& =544.1 \times 3 \\
& =820 \times \frac{1}{3} & & =1632.3 \mathrm{~mol} \\
& =273.3 \mathrm{~mol} & & \\
& =\text { Either } & n\left(\mathrm{CH}_{3} \mathrm{OH}\right) & <n\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{\text {required }}
\end{array}
$$

$$
n(\text { Triglyceride })>n(\text { Triglyceride })_{\text {required }}
$$

$\therefore \mathrm{CH}_{3} \mathrm{OH}$ is limiting reagent
(1)

$$
\begin{align*}
n(\text { Biodiesel }) & =n\left(\mathrm{CH}_{3} \mathrm{OH}\right) \times \frac{3}{3} \times \text { Efficiency } \\
& =820 \times 0.83 \\
& =680.6 \mathrm{~mol} \tag{1}
\end{align*}
$$

$$
\begin{align*}
\text { Energy } & =680.6 \times 11 \\
& =7487 \mathrm{~kJ} \\
& =7.487 \mathrm{MJ} \tag{1}
\end{align*}
$$

\therefore since $7.487 M J>2 M J$, the enzymes will denature and finish off $B C M!(1)$

Problem Set 14 - Chemical Synthesis Repetitive Questions

Concept 1

Chemical Synthesis - Repetitive Questions Answers

Haber Process and Contact Process: Qs 1.11, 1.21, 1.31, 1.32
1.11
[12 marks]
(a)

Reaction	Optimum Temperature	Optimum Pressure
(i) $\mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{C}_{(s)} \rightleftharpoons \mathrm{CO}_{(g)}+\mathrm{H}_{2(\mathrm{~g})}+107 \mathrm{~kJ}$	High Low	High Moderate (1) Low
(ii) $\mathbf{2 H I} \mathbf{I g}_{(g)} \rightleftharpoons I_{2(g)}+H_{2(g)} \quad \Delta \boldsymbol{H}=\mathbf{2 3 k J} / \mathbf{m o l}$	High (1) Moderate Low	High (1) Moderate Low
$\text { (iii) } \begin{gathered} \mathbf{2 S O}_{3(g)}+\boldsymbol{C O}_{\mathbf{2}(g)} \rightleftharpoons C S_{2(g)}+4 O_{2(g)} \\ \Delta \boldsymbol{H}<\mathbf{0} \end{gathered}$	High Moderate (1) Low	High Moderate (1) Low
$\text { (iv) } \begin{gathered} \operatorname{CoCl}_{\mathbf{2}(g)} \rightleftharpoons \mathrm{Co}_{(g)}+C l_{2(g)} \\ \Delta \boldsymbol{H}<\mathbf{0} \end{gathered}$	High Moderate (1) Low	High Moderate (1) Low

(b) When a catalyst is added to the system, the catalyst will provide an alternate reaction pathway with a lower activation energy for both the forward and reverse reactions (1). An equal decrease in the activation energies means there will be an equal increase in the proportion of successful collisions (1). This will increase the reaction rate for the forward and reverse reactions equally (1). With an equal increase in reaction rates, there will be no net forward or reverse reaction created, so the yield will remain unchanged throughout (1).

Marking Criteria	Marks Allocated
-Catalysts provide an alternate reaction pathway with a lower activation energy	
- An equal decrease in activation energies creates an equal increase in the	
proportion of successful collisions	

- The reaction rate will increase equally for the forward and reverse reactions
- No net reaction is created so the yield will remain unchanged
1.31
(a)

Time	Change
T_{1}	Increased $\boldsymbol{H}_{\mathbf{2}}$ Concentration (1)
T_{2}	Volume increased (doubled)/pressure decreased (halved) (1)
T_{3}	Temperature Decreased (1)

Marking Criteria	Marks Allocated	
\bullet States correct change at T_{1}, T_{2} and T_{3}		$1-3$
	Total	$\mathbf{3}$

(b) Collisions can only take place at the surface of solids (1). As a result, when you increase the surface area of the catalyst by changing it from a block to a mesh, the catalyst increases the number of particles it can catalyse at a given instant (1). This will increase the reaction rate of this reaction (1), however it will have no effect on the yield as the forward and reverse reaction rates will increase equally (1).

Points to note: This question is asking about the effect of surface area as this is the factor being changed, not the presence/absence of a catalyst. So don't fall for the trick of writing about the effect of the adding/removing a catalyst!

Marking Criteria	Marks Allocated
- Collisions can only take place at the surface of solids	
- Increasing the surface area increases the number of particles that can be	
catalysed at a given instant	
- This will increase the reaction rate equally for the forward and reverse	
reactions	
- No net reaction is created so the yield will remain unchanged	$1-4$
Total	$\mathbf{4}$

(c) To optimise the reaction rate and yield a moderate temperature and high pressure should be used (1). A higher temperature will favour the reverse endothermic reaction in order to cool down the system, which will decrease the reaction yield (1). However, a higher temperature will increase the reaction rate from an increase in the collision frequency and proportion of successful collisions, so a moderate temperature should be used (1). A higher pressure will favour the forward reaction due to a $4: 2$ gaseous molar ratio, which will increase the reaction yield (1). A higher pressure will also increase the reaction rate from an increase in the collision frequency (1).

Marking Criteria	Marks Allocated
\bullet To optimise reaction rate and yield a moderate temperature and high	
pressure should be used	

- A higher temperature will decrease the yield from a favoured reverse endothermic reaction
- A higher temperature will increase the reaction rate from an increase in collision frequency and proportion of successful collisions
- A pressure increase will increase the yield from a favoured forward reaction due to a 4:2 gaseous molar ratio
- A pressure increase will increase the reaction rate from an increase in the collision frequency
1.41
[12 marks]
(a) When the temperature of the system is increased, the system will act to partially oppose this temperature increase by favouring the endothermic reverse reaction in order to cool down the system (1). A favoured reverse reaction means the yield of sulfur trioxide will decrease from it being consumed (1). As a result a moderate temperature is used to find a compromise between the reaction rate and yield (1).

Marking Criteria	Marks Allocated
- Increasing the temperature will favour the endothermic reverse reaction	
- A favoured reverse reaction will decrease the yield sulfur trioxide from it	
being consumed	
- A moderate temperature is used to find a compromise between reaction	
rate and yield	$1-3$
	Total

(b)

Time	Change made	Effect on Yield (\uparrow or \downarrow)
T_{1}	Temperature increase	\downarrow
T_{2}	Pressure increase	\uparrow
T_{3}	$\mathrm{Fe}_{2} \mathrm{O}_{3}$ catalyst removed	No Effect

Marking Criteria	Marks Allocated
\bullet States correct effect on yield at T_{1}, T_{2} and T_{3}	$1-3$
	Total
$\mathbf{3}$	

Marking Criteria	Marks Allocated
From T_{1} to E_{1} : - Instantaneous spike in both reaction rates at T_{1} with greater increase in reverse reaction rate - Correct curvature and orientation for all curves to reach equilibrium at E_{1}	1-2
From T_{2} to E_{2} : - Instantaneous spike in both reaction rates at T_{2} with greater increase in forward reaction rate - Correct curvature and orientation for all curves to reach equilibrium at E_{2}	1-2
From T_{3} to E_{3} : - Equal instantaneous drop in both reaction rates	1
- Equilibrium lines from E_{1} to T_{2}, E_{2} to T_{3} and E_{3} onwards	1
Total	6

Ethyl Ethanoate Production: Qs 1.51

1.51
[13 marks]
(a) When the temperature is increased, the average kinetic energy of the particles increases meaning the collision frequency and proportion of successful collisions increases for both forward and reverse reactions, thus increasing the reaction rate (1). There will be a greater increase in the proportion of successful collisions in the endothermic reverse reaction thus creating a net reverse reaction which decreases the yield (1). Therefore, a compromise is made between the reaction rate and yield thus a moderate temperature is selected (1). When the pressure is increased, the collision frequency increases for both forward and reverse reactions, thus increasing the reaction rate (1). There will be a greater increase in the collision frequency in the forward reaction due to the 2:1 gaseous molar ratio thus creating a net forward reaction which increases the yield (1). Thus a high pressure is selected (1).

Marking Criteria	Marks Allocated
- A temperature increase will increase the collision frequency and	
proportion of successful collisions, increasing the reaction rate	
-The proportion of successful collisions will increase more for the endothermic reverse reaction, decreasing the yield - Thus a moderate temperature is used - A pressure increase will increase the collision frequency, increasing the reaction rate The collision frequency will increase more for the forward reaction due to - $2: 1$ gaseous molar ratio, increasing the yield Thus a high pressure is used	

(b) Esterification reaction (1)

Marking Criteria	Marks Allocated	
\bullet Esterification reaction		1
	Total	$\mathbf{1}$

(c)

Reduction Half-Equation: $\quad \mathrm{MnO}_{4(a q)}^{-}+8 \mathrm{H}_{(a q)}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}_{(a q)}^{2+}+4 \mathrm{H}_{2} \mathrm{O}_{(l)}$

$$
\begin{equation*}
5 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{(a q)}+4 \mathrm{MnO}_{4(a q)}^{-}+12 \mathrm{H}_{(a q)}^{+} \rightarrow 5 \mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+4 \mathrm{Mn}_{(a q)}^{2+}+11 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

Marking Criteria	Marks Allocated
\bullet Correct oxidation half-equation	
\bullet - Correct reduction half-equation	
• Balanced overall equation	Total
	$\mathbf{3}$

(d) When the pressure is increased, the collision frequency increases for both forward and reverse reactions, thus increasing the reaction rate (1). However, the collision frequency will increase equally for the forward and reverse reactions due to the 2 : 2 gaseous molar ratio, creating no net reaction. Thus with no net reaction the yield will remain unaffected (1).

Marking Criteria	Marks Allocated	
• A pressure increase will increase the collision frequency, increasing the		
reaction rate		
- The collision frequency will increase equally for the forward and reverse		
reactions due to a 2:2 gaseous molar ratio		
- With no net reaction the yield will remain unaffected	$1-3$	
	Total	$\mathbf{3}$

(a) Some of the advantages of the hydration of ethanol relative to the fermentation are:

- It is a much faster process because it occurs at higher temperatures (1)
- It is a much faster process because it occurs at higher pressures (1)
- Its phosphoric acid catalyst does not denature so it can be used at higher temperatures making it a faster process (1)
- It has a higher yield because it produces a higher purity of ethanol (1)

Marking Criteria	Marks Allocated
\bullet States three appropriate advantages	$1-3$
	Total

(b) Some advantages of fermentation in relation to green chemistry are:

- Fermentation occurs at biological temperatures which is more energy efficient (1)
- Yeast enzymes are biodegradable (1)
- The yeast enzymes can be reused (1)
- The reactants are made from renewable plant material (1)
- Yeast enzymes are specific and do not produce unwanted by-products (1)

Marking Criteria	Marks Allocated
\bulletStates three appropriate reasons why fermentation is in alignment with green chemistry principles	$1-3$
	Total

(c) Some advantages of enzymes over catalysts are:

- Enzymes are most effective at biological temperatures which is cheaper (1)
- Enzymes are highly specific, so they will only catalyse a specific reaction (1)
- Enzymes can be reused (1)
- Enzymes are biodegradable (1)

Some disadvantages of enzymes over catalysts are:

- Enzymes are temperature and pH sensitive, so their environment must be regulated closely (1)
- Enzymes can denature, becoming ineffective (1)
- Enzymes are generally expensive to produce (1)
- Reactions with enzymes are slower because they must occur at biological temperatures (1)

Marking Criteria	Marks Allocated	
\bullet States three appropriate advantages	$1-3$	
\bullet States three appropriate disadvantages		$1-3$
	Total	$\mathbf{6}$

1.91
[13 marks]
(a)

Biodiesel (methyl stearate)

Marking Criteria	Marks Allocated	
\bullet Correct reactants and products stated		$1-2$
Enzyme and reversible nature of reaction shown	Total	$\mathbf{2}$

(b) Some advantages of the base catalyst over the lipase enzyme are:

- High temperatures can be used allowing for a higher reaction rate (1)
- It is cheaper to source than lipase enzymes (1)
- The base catalyst will not denature so it doesn't need to be monitored (1)

Some disadvantages of enzymes over catalysts are:

- The base catalyst is toxic and can create disposal issues (1)
- The base can react with free fatty acids to form unwanted soap (1)
- The base catalyst cannot be reused, new base is need for each reaction (1)
- Higher temperatures require a larger energy input and higher cost (1)

Marking Criteria	Marks Allocated	
\bullet States three appropriate advantages	$1-3$	
\bullet States three appropriate disadvantages	Total	$1-3$
	$\mathbf{6}$	

(c)

Temperature	Explanation using Collision Theory
High	When the temperature is increased, the average kinetic energy of the particles increases meaning the collision frequency and proportion of successful collisions increases for both forward and reverse reactions, thus increasing the reaction rate (1). There will be a greater increase in the proportion of successful collisions in the endothermic reverse reaction thus creating a net reverse reaction which decreases Lhe yield (1). Therefore, a compromise is made between the reaction rate and yield thus a moderate temperature is selected (1).

Marking Criteria	Marks Allocated	
• A temperature increase will increase the collision frequency and		
proportion of successful collisions, increasing the reaction rate		
-The proportion of successful collisions will increase more for the endothermic reverse reaction, decreasing the yield - Thus a moderate temperature is used	$1-3$	
	Total	$\mathbf{3}$

(d) If free fatty acids are added and its concentration is too high then the NaOH will react with the free fatty acids to create soap (1). This is an unwanted reaction and makes the resulting biodiesel require additional purification (1).

Marking Criteria	Marks Allocated	
\bullet Free fatty acids can react with the base catalyst to form soap		$1-2$
\bullet This makes the biodiesel require additional purification	Total	$\mathbf{2}$

Challenging Stoichiometry - Repetitive Questions Answers

(a)

$$
\begin{align*}
\boldsymbol{n}\left(\boldsymbol{N}_{2}\right) & =\frac{P V}{R T} \\
& =\frac{100 \times 50}{8.314 \times 300} \\
& =\mathbf{2 . 0 0 5} \mathbf{~ m o l} \tag{1}
\end{align*}
$$

(1)

$$
\begin{aligned}
\boldsymbol{n}\left(\boldsymbol{H}_{2}\right) & =\frac{V}{22.71} \\
& =\frac{62}{22.71} \\
& =\mathbf{2 . 7 3 0} \mathbf{~ m o l}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{n}\left(N_{2}\right)_{\text {required }}=n\left(H_{2}\right) \times \frac{1}{3} \\
&= 2.730 \times \frac{1}{3} \\
&= \mathbf{0 . 9 1} \mathbf{~ m o l} \\
& n\left(N_{2}\right)>n\left(N_{2}\right)_{\text {required }} \\
& \therefore \boldsymbol{H}_{2} \text { is limiting reagent }
\end{aligned}
$$

(1)
$\boldsymbol{n}\left(\boldsymbol{H}_{2}\right)_{\text {required }}=n\left(N_{2}\right) \times 3$
$=2.005 \times 3$
$=6.015 \mathrm{~mol}$
$n\left(\mathrm{H}_{2}\right)<n\left(\mathrm{H}_{2}\right)_{\text {required }}$
$\therefore H_{2}$ is limiting reagent
(1)

$$
\begin{align*}
n\left(\mathrm{NH}_{3}\right)_{\text {theoretical }} & =\boldsymbol{n}\left(\boldsymbol{H}_{2}\right) \times \frac{2}{3} \\
& =2.73 \mathrm{~mol} \times \frac{2}{3} \\
& =1.82 \mathrm{~mol} \\
m\left(\mathrm{NH}_{3}\right)_{\text {theoretical }} & =n \times M \tag{1}\\
& =1.82 \times(14.01+3 \times 1.008) \\
& =31 \mathrm{~g}
\end{align*}
$$

(b)

$$
\begin{aligned}
\text { Efficency } & =\frac{\boldsymbol{m}\left(\mathrm{NH}_{3}\right)_{\text {actual }}}{\boldsymbol{m}\left(\mathrm{NH}_{3}\right)_{\text {theoretical }}} \times 100 \\
& =\frac{29}{31} \times 100 \\
& =93.6 \%
\end{aligned}
$$

(c)

$$
\begin{align*}
n\left(\mathrm{HNO}_{3}\right) & =c V \\
& =1 \times 100 \\
& =100 \mathrm{~mol} \tag{1}\\
\boldsymbol{n}\left(\mathrm{NH}_{3}\right)= & n\left(\mathbf{H N O}_{3}\right) \times \frac{12}{8} \\
= & 100 \times 1.5 \\
= & \mathbf{1 5 0} \mathbf{~ m o l} \tag{1}
\end{align*}
$$

$V\left(\mathrm{NH}_{3}\right)=\frac{n R T}{P}$
$=\frac{150 \times 8.314 \times 300}{200}$

$$
=1871 L
$$

(d)

$$
\begin{align*}
V_{2}\left(\mathrm{HNO}_{3}\right) & =\frac{c_{1} V_{1}}{c_{2}} \tag{1}\\
& =\frac{1 \times 100}{0.330} \\
& =303 \mathrm{~L} \tag{1}
\end{align*}
$$

(a)

Equation 1×2	$2 \mathrm{~S}_{(l)}+2 \mathrm{O}_{2(g)} \rightarrow 2 \mathrm{SO}_{2(g)}$
Equation 2	$2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{SO}_{3(g)}$
Equation 3×2	$2 \mathrm{SO}_{3(g)}+2 \mathrm{H}_{2} \mathrm{SO}_{4(l)} \rightarrow 2 \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7(l)}$
Equation 4×2	$2 \mathrm{H}_{2} \mathrm{~S}_{\mathbf{2}} \mathrm{O}_{7(l)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 4 \mathrm{H}_{2} \mathrm{SO}_{4(l)}$

$$
\begin{gather*}
2 \mathrm{~S}_{(l)}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{SO}_{2(\mathrm{~g})} \\
2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})} \\
2 \mathrm{SO}_{3(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{SO}_{4(l)} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{7(l)}^{2} \\
\frac{2 \mathrm{H}_{2} \mathrm{~S}_{2} \sigma_{7(l)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{KH}_{2} \mathrm{SO}_{4(l)}}{2 \mathrm{~S}_{(\mathrm{l})}+3 \mathrm{OO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}} \\
\hline \tag{3}
\end{gather*}
$$

(b)

$$
\begin{array}{rlrl}
\boldsymbol{n}(\boldsymbol{S}) & =\frac{m}{M} \times 0.48 & \begin{aligned}
\boldsymbol{n}\left(\boldsymbol{O}_{2}\right) & =\frac{V}{22.71} \times 0.20 \\
& =\frac{250}{32.07} \times 0.48 \\
& =\frac{122}{22.71} \times 0.20 \\
& =3.742 \mathrm{~mol} \text { (1) }
\end{aligned} & \\
\boldsymbol{n}(\boldsymbol{S})_{\text {required }} & =n\left(O_{2}\right) \times \frac{2}{3} & & \\
& =1.074 \times \frac{2}{3} & \boldsymbol{n o l} \text { (} \mathbf{1})
\end{array}
$$

$$
\begin{align*}
n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) & =\boldsymbol{n}\left(\boldsymbol{O}_{2}\right) \times \frac{2}{3} \\
& =1.074 \times \frac{2}{3} \\
& =0.716 \mathrm{~mol} \quad \text { (1) } \\
{\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right] } & =\frac{n}{V} \\
& =\frac{0.716}{50} \\
& =0.0143 \mathrm{~mol} \mathrm{~L}^{-1} \tag{1}
\end{align*}
$$

(c)

$$
\begin{align*}
& n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)= \\
&= 0.1 \times 72 \\
&=7.2 \mathrm{~mol} \\
& \boldsymbol{n}(\boldsymbol{S})= n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) \\
&= 7.2 \mathrm{~mol} \\
& \boldsymbol{m}(\boldsymbol{S})=n M \\
&= 7.2 \times 32.07 \\
&= 230.9 \mathrm{~g} \\
& \% \text { (1) } \\
& \% \text { by mass }(\boldsymbol{S})=\frac{\boldsymbol{m}(\boldsymbol{S})}{\boldsymbol{m (S})_{\text {impure }}} \times 100 \\
&=\frac{230.9}{250} \times 100 \tag{1}\\
&=\mathbf{9 2 . 4} \%
\end{align*}
$$

$$
\mathrm{CH}_{2} \mathrm{CH}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}_{(\mathrm{g})}
$$

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{(g)}+\mathrm{CH}_{3} \mathrm{COOH}_{(g)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3(g)}+\text { H }_{2} \mathrm{O}_{(\mathrm{g})}
$$

$$
\begin{equation*}
\mathrm{CH}_{2} \mathrm{CH}_{2(\mathrm{~g})}+\mathrm{CH}_{3} \mathrm{COOH}_{(g)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3(\mathrm{~g})} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\boldsymbol{n}\left(\boldsymbol{C H}_{2} \boldsymbol{C H}_{2}\right) & =\frac{P V}{R T} \times 0.93 \\
& =\frac{400 \times 150}{8.314 \times 300} \times 0.93 \\
& =\mathbf{2 2 . 3 7} \mathbf{~ m o l}
\end{aligned}
$$

$$
\begin{equation*}
\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{\text {dilute }}=\frac{c_{1} V_{1}}{V_{2}} \tag{1}
\end{equation*}
$$

$$
=\frac{1 \times 300}{350}
$$

$$
\begin{equation*}
=0.857 \mathrm{~mol} L^{-1} \tag{1}
\end{equation*}
$$

$$
n\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=c V
$$

$$
=0.857 \times 100
$$

$$
\begin{equation*}
=85.7 \mathrm{~mol} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
\boldsymbol{n}\left(\mathbf{C H}_{2} \mathbf{C H}_{2}\right)_{\text {required }} & =n\left(\mathrm{CH}_{3} \mathrm{COOH}\right) \times \frac{1}{1} \\
& =\mathbf{8 5 . 7} \mathbf{~ m o l} \text { (1) } \\
n\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)< & n\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{\text {required }} \tag{1}
\end{align*}
$$

$\therefore \mathrm{CH}_{2} \mathrm{CH}_{2}$ is the limiting reagent

$$
\boldsymbol{n}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{\text {required }}=n\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right) \times \frac{1}{1}
$$

$$
\begin{equation*}
=22.37 \mathrm{~mol} \tag{1}
\end{equation*}
$$

$$
n\left(\mathrm{CH}_{3} \mathrm{COOH}\right)>n\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{\text {required }}
$$

$$
\begin{equation*}
\therefore \mathrm{CH}_{2} \mathrm{CH}_{2} \text { is the limiting reagent } \tag{1}
\end{equation*}
$$

$$
\begin{align*}
n\left(\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right) & =n\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right) \times \frac{1}{1} \times \text { Efficiency } \\
& =22.37 \times 0.82 \\
& =18.34 \mathrm{~mol} \tag{1}
\end{align*}
$$

$V\left(\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)=n \times 22.71$

$$
=18.34 \times 22.71
$$

$$
=416.5 L
$$

Points to note: Some of the initial information provided is not actually relevant to the calculations. It is important to be able to determine what information you actually need to use and what information you don't.

$$
\begin{align*}
M(\text { Triglyceride }) & =57 \times 12.01+110 \times 1.008+6 \times 16 \\
& =891.45 \mathrm{~g} \mathrm{~mol}^{-1} \quad(\mathbf{1}) \tag{1}\\
M(\text { Glycerol }) & =3 \times 12.01+8 \times 1.008+3 \times 16 \\
& =92.094 \mathrm{~g} \mathrm{~mol}^{-1} \quad(1)
\end{aligned} \begin{aligned}
& \begin{aligned}
M(\text { Biodiesel }) & =19
\end{aligned} \\
&=12.01+38 \times 1.008+2 \times 16 \\
& n(\text { Biodiesel })=\frac{m}{M} \tag{1}\\
&=\frac{2500 \times 10^{3}}{298.494} \\
&=\mathbf{8 3 7 5 . 4} \mathbf{~ m o l} \\
& \text { (1) }
\end{align*}
$$

$$
\begin{aligned}
\boldsymbol{n}(\text { Glycerol }) & =\frac{m}{M} \\
& =\frac{3 \times 10^{6}}{92.094} \\
& =32575.4 \mathrm{~mol}
\end{aligned}
$$

Since $\boldsymbol{n}($ Glycerol $)>\mathbf{3} \times \boldsymbol{n}($ Biodiesel $)$ the maximum production time will be based on producing the glycerol (1)

$$
\begin{align*}
& \boldsymbol{n}(\text { Triglyceride })_{\text {required }}=\frac{n(\text { Glycerol }) \times \frac{1}{1}}{E f \text { ficiency }} \\
& =\frac{32575.4}{0.94} \\
& =34654.7 \mathrm{~mol} \tag{1}\\
& \boldsymbol{n}(\text { Triglyceride })_{\text {per minute }}=\frac{V \times 0.86}{M} \\
& =\frac{10 \times 10^{3} \times 0.86}{891.45} \\
& =9.647 \text { mol per min (1) } \\
& \text { time }(\text { triglyceride })=\frac{n\left(\text { triglyceride }^{\text {required }}\right.}{n(\text { triglyceride })_{\text {per minute }}} \\
& =\frac{34654.7}{9.647} \\
& =3592.3 \text { min (1) } \\
& \approx 2.5 \text { days } \\
& \boldsymbol{n}\left(\mathrm{CH}_{3} \mathbf{O H}\right)_{\text {required }}=\frac{n(\text { Glycerol }) \times \frac{3}{1}}{\text { Efficiency }} \\
& =\frac{32575.4 \times 3}{0.94} \\
& =103964 \mathrm{~mol} \tag{1}\\
& \boldsymbol{n}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{\text {per minute }}=\frac{m}{M} \\
& =\frac{50 \times 10^{3}}{12.01+4 \times 1.008+16} \\
& =1560.45 \mathrm{~mol} \text { per min } \\
& \text { time }\left(\boldsymbol{C H}_{3} \mathbf{O H}\right)=\frac{n\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{\text {required }}}{n\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{\text {per minute }}} \\
& =\frac{103964}{1560.45} \\
& =66.6 \mathrm{~min}(1) \\
& \approx 1 \text { hour } 7 \text { mins }
\end{align*}
$$

\therefore the maximum time to make this order will be 1 hour 7 minutes (1)

Points to note: Whilst this question is very difficult and would likely never get asked it is a good example of the critical thinking calculations they like to ask in exams. In these types of questions you need to consider the information you have, the equations you can use and the final result you want and then slowly work towards getting the final answer. When you start large questions like these don't worry if you don't know how to do it exactly, just start with the information that you think is relevant and you will likely find you can figure it out as you go.

Also note that $1 L$ of trigliceride $=1 \mathrm{~kg}$ of triglyceride, which can be used to determine the mass of the triglyceride added per minute. This will usually be stated in an exam question.

Chemistry College Exam Answers

Multiple Choice Answer Sheet

1. (a)	(b)	(c)	(d)	15. (a)	(b)	(c)	(d)
2. (a)	(b)	(c)	(d)	16. (a)	(b)	(c)	(d)
3. (a)	(b)	(c)	(d)	17. (a)	(b)	(c)	(d)
4. (a)	(b)	(c)	(d)	18. (a)	(b)	(c)	(d)
5. (a)	(b)	(c)	(d)	19. (a)	(b)	(c)	(d)
6. (a)	(b)	(c)	(d)	20. (a)	(b)	(c)	(d)
7. (a)	(b)	(c)	(d)	21. (a)	(b)	(c)	(d)
8. (a)	(b)	(c)	(d)	22. (a)	(b)	(c)	(d)
9. (a)	(b)	(c)	(d)	23. (a)	(b)	(c)	(d)
10. (a)	(b)	(c)	(d)	24. (a)	(b)	(c)	(d)
11. (a)	(b)	(c)	(d)	25. (a)	(b)	(c)	(d)
12. (a)	(b)	(c)	(d)				
13. (a)	(b)	(c)	(d)				
14. (a)	(b)	(c)	(d)				

1. Answer - (b) - Both the pipette and burette need rinsing in the solution they will contain. The conical flask will always be rinsed in water.
2. Answer - (c) - Addition polymerization involves the joining of two monomer units by the double bond breaking. Condensation polymerization involves the joining of two different monomer units which contain two functional groups. Only i), ii) and v) contain either a double bond or two functional groups on the end of the molecule.
3. Answer - (b) - the oxidation number of chromium increases from +3 to +6 , meaning it is the reductant. The oxidation number on the hydrogen peroxide decreases from -1 to -2 , meaning it is the oxidant. Note: an oxidant undergoes reduction, and a reductant undergoes oxidation.
4. Answer - (b) - there are four possible isomers (in the WACE syllabus): butan-1-ol, butan-2-ol, methylpropan-1-ol and methylpropane-2-ol.
5. Answer - (b) - $\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{CH}_{3}$ is an alcohol which has a higher solubility than similar sized alkanes, amines and aldehydes.
6. Answer - (c) - statement (ii) is incorrect because soap forms a scum from calcium ions and magnesium ions in hard water, not sodium hydroxide. Statement (iii) is incorrect because the head of the soap micelle head points outwards, while the tail points inwards to the center.
7. Answer - (c) - whilst reaction (ii) shows the production of carbon dioxide it is not an ocean equilibrium system, and reaction (iii) is not a relevant equilibrium system.
8. Answer - (b) - reaction at anode: $\mathrm{Pb}_{(s)}+\mathrm{SO}_{4}^{2-}{ }_{(a q)} \rightleftharpoons \mathrm{PbSO}_{4(s)} \quad E_{0}=0.36 \mathrm{~V}$, reaction at cathode: $\mathrm{PbO}_{2(s)}+\mathrm{SO}_{4(a q)}^{2-}+4 H_{(a q)}^{+}+2 e^{-} \rightleftharpoons \mathrm{PbSO}_{4(s)}+2 \mathrm{H}_{2} O_{(l)} E_{0}=1.69 \mathrm{~V}$. Whilst there are other half-reactions that could occur, these have the highest voltage and are therefore the reactions that actually occur.
9. Answer - (b) - Even though the forward reaction will be favored to decrease the pH again, overall the pH will remain slightly higher. The concentration of $\mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}$will not increase 'overall' because it will neutralised by the base, causing an initial drop in the $\mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}$concentration that cannot be recovered. The concentration of the $\mathrm{HCO}_{3}^{-}(a q)$ will be the only one increasing from a favoured forward reaction.
10. Answer - (d) - this answer will be determined from your knowledge of the advantages and disadvantages of inorganic catalysts versus enzymes
11. Answer - (d) - Ketones are formed by the oxidation of secondary alcohols. Both i) and v) are secondary alcohols.
12. Answer - (d) - the concentration of both the products and reactants (excluding water) will decrease because they have been diluted. Water is a liquid so its concentration will remain unaffected. The reverse reaction will also be favoured meaning the solution will become more pink and less blue. (note it could also be argued that the solution becomes less pink and less blue because the solution is being diluted, however this option is not provided with the correct concentration changes).
13. Answer - (b) - the order and placement is only correct in b.
14. Answer - (c) - The question asks which statement is definitely true. Whilst statements (a) and (d) could be correct, they are not definitely correct. Statement (c) is the only statement that is definitely true as pH is dependent upon the combination of strength and concentration.
15. Answer - (b) $-N i, P b, M g$ and $Z n$ will all be oxidised because they have a higher oxidation potential than Cu but only Cu^{2+} will be reduced because it is the only ion with a reduction potential greater than zero.
16. Answer - (d) - Answers (a) through to (c) are all incorrect. The reaction is exothermic so increasing the temperature will result in the yield decreasing as reverse reaction is favoured. The 2:1 gaseous molar ratio means high pressure and temperature optimize both reaction rate and yield. A catalyst increases the rate of reaction for both the forward and reverse reactions equally so it has no effect on yield
17. Answer - (c) - This answer is based on the following calculations: $\frac{\text { Final } p H}{\text { Initial } p H}-1=\frac{10^{-9.2}}{10^{-9.1}}-1=$ $10^{-0.1}-1=-21 \% \quad \therefore$ there has been a 21% decrease
18. Answer - (d) - Nylon form strong hydrogen bonds between its chains giving it its high tensile strength
19. Answer - (d) - a decrease in pressure or temperature, as well as increase in volume will decrease the reaction rate, and this graph shows an increase. The addition of a catalyst will increase the reaction rate of both the forward and reverse reactions equally.
20. Answer - (a) - only (iii), (iv) and (v) will produce a positive standard reduction potential and involve one of the reactants oxidizing and the other reducing.
21. Answer - (a) - as the temperature decreases, the K_{w} decreases and thus the concentration of products decreases. This means the reverse reaction is favoured when temperature is decreased, meaning the reverse reaction is exothermic. Thus the forward reaction is endothermic.
22. Answer - (c) - This answer is based on the following calculations: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{K_{w}}=$ $\sqrt{0.38 \times 10^{-14}}=6.164 \times 10^{-8}=\Rightarrow \quad p H=-\log \left[H_{3} O^{+}\right]=-\log \left[6.164 \times 10^{-8}\right]=7.21$
23. Answer - (c) - Since a strong acid and weak base have been used, the equivalence point will be around pH 3-5 (i.e. acidic). Phenolphathlein's end point is at a pH of $8-10$ (i.e. basic), so the end point will occur before the equivalence point since ammonia is in the conical flask as we are going from a basic to acidic pH . Since less titrant needs to be added to reach the end point, so the calculated ammonia concentration will be lower.
24. Answer - (a) - Using the wrong indicator is a systematic error because it creates a constant bias in the results that will occur in every trial. Using different glassware and viewing the meniscus from different levels will give results below and above the theoretical value meaning it is random. Rinsing a conical flask with water is the correct procedure.
25. Answer - (b) - Oxidizing an aldehyde produces a carboxylic acid. Oxidizing a secondary alcohol produces a ketone. An alcohol and carboxylic acid produce an ester. An alkene and hydrogen gas produce an alkane.
26.

(a)

Marking Criteria	Marks Allocated
\bullet Electron flow drawn from anode to cathode	1
	Total

(b)

Oxidation half-equation	$\mathbf{2 \mathbf { H } _ { \mathbf { 2 } } \boldsymbol { O } _ { (l) } \rightleftharpoons \mathrm { O } _ { 2 (g) } + 4 H _ { (a q) } ^ { + } + 4 e ^ { - } \text { (1) }}$Reduction half-equation

Marking Criteria	Marks Allocated
\bullet Correct oxidation half-equation	$1-2$
\bullet Correct reduction half-equation	Total
	$\mathbf{2}$

Points to note: Water is oxidized and reduced because it has higher oxidation and reduction potential than fluorine and sodium ions. Always remember to consider the oxidation and reduction potentials of water in aqueous electrolytic cells.
(c)

$$
\begin{aligned}
& (-1.23)+(-0.83)=-2.06 \mathrm{~V} \\
& \therefore \text { a voltage of } 2.06 \mathrm{~V} \text { is required (1) }
\end{aligned}
$$

Marking Criteria	Marks Allocated
\bullet States a positive voltage of 2.06 V is required	1

(d) It would be observed that a colourless, odourless gas is produced at the anode (1), and a colourless, odourless gas is produced at the cathode (1).

Marking Criteria	Marks Allocated
• A colourless odourless gas is produced at the anode	$1-2$
• A colourless odourless gas is produced at the cathode	
Total	$\mathbf{2}$

(e) The \boldsymbol{E}^{0} for the oxidation of fluorine ions is $-\mathbf{2 . 8 9 V}$ and the E^{0} for the reduction of sodium ions is $-\mathbf{2 . 7 1 V}$, which are much lower than water's oxidation and reduction potentials of $\mathbf{- 1 . 2 3 V}$ and -0.83 V respectively (1). Therefore, in an aqueous electrolytic cell, water will be oxidized and reduced in preference to sodium and fluorine (1). As a result, sodium fluoride undergoes electrolysis in its molten form so that there is no water present to prevent its oxidation and reduction from occurring (1).

| Marking Criteria | Marks Allocated |
| :--- | :--- | :---: |
| -Compares the E^{0} values of fluorine and sodium ions with water
 - Explains why water is oxidised and reduced in preference to sodium and
 fluorine ions | |
| -Sodium fluoride undergoes electrolysis in its molten form because there
 is no water present | $1-3$ |
| Total | |

27. [7 marks]
(a)

	Beaker A	Beaker B	Beaker C
Compound name	Methylpropan-2-ol (1)	Butan-1-ol (1)	Butan-2-ol (1)
Structural formula	 (1)		 (1)

Marking Criteria	Marks Allocated
\bullet States correct compound name	$1-3$
\bullet Draws correct compound structure based on name	$1-3$
$\mathbf{6}$	

(b) Butyl ethanoate (1)

Marking Criteria	Marks Allocated
\bullet Butyl ethanoate	1
	Total

28.

[8 marks]
(a)

Marking Criteria	Marks Allocated
From T_{1} to E_{1} : - Instantaneous drop in all concentration curves at T_{1} to half their concentrations - Correct curvature and orientation for all curves to reach equilibrium at E_{1}	1-2
From T_{2} to E_{2} : - Continue equilibrium lines	1
- Equilibrium lines from E_{1} to T_{2}, E_{2} to T_{3} and E_{3} onwards	1
Total	4

Points to note: At T_{2} the pressure change has no effect because this is an aqueous system, so the concentrations remain unaffected.
(b)

Time	Predicted Colour
T_{1}	Very pale brown (1)
E_{1}	Pale brown (1)
T_{2}	Pale brown (1)
E_{2}	Pale brown (1)

Marking Criteria	Marks Allocated
$\bullet \quad$States correct predicted colour based off their concentration graph drawn in part (a)	$1-4$
	Total

29.

[5 marks]
The boiling point of a substance is dependent upon the sum of the strength of its intermolecular forces (1). Pentane, pentanal and pentanoic acid all exhibit dispersion forces due to the presence of electrons, and these are of a similar strength as the molecules all have similar molar masses (1). Both pentanal and pentanoic acid are polar molecules and therefore exhibit dipole-dipole forces, giving them a higher boiling point than pentane (1). Only pentanoic acid has an $\mathbf{O H}$ group that can form hydrogen bonds with the lone pair electrons on another pentanoic acid molecule (1). As a result, pentanoic acid has the highest boiling point because it has the strongest sum of intermolecular forces (1).

Marking Criteria	Marks Allocated
- Boiling point is dependent upon the sum of the strength of the intermolecular forces - Pentane, pentanal and pentanoic acid all exhibit dispersion forces - Pentanal and pentanoic acid exhibit dipole-dipole forces, giving them higher boiling points than pentane - Only pentanoic acid exhibits hydrogen bonding - The sum of intermolecular forces is greatest for pentanoic acid, giving it the highest boiling point	1-5
Total	5

30.

(a)

Salt	NaF	$\mathrm{NH}_{4} \mathrm{Cl}$	LiOH	$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	KHSO_{4}	MgCO_{3}
Nature	Basic	Acidic	Basic	Acidic	Acidic	Basic

Marking Criteria	Marks Allocated
\bullet States correct nature of each salt (1/2 mark for each correct answer)	$1-3$
Total	$\mathbf{3}$

(b) KHSO_{4} is an amphiprotic substance because it is capable of both donating and accepting a proton (1). For instance, in water KHSO_{4} can either donate a proton (acting as an acid): $\mathrm{HSO}_{4}^{-}{ }_{(a q)}+$ $\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{SO}_{4(a q)}^{2-}+\mathrm{H}_{3} \mathrm{O}_{(a q)}^{+} \quad$ (1) or accept a proton (acting as a base) $\mathrm{HSO}_{4(a q)}^{-}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons$ $\mathrm{H}_{2} \mathrm{SO}_{4(a q)}+\mathrm{OH}_{(a q)}^{-}$(1).

| Marking Criteria | Marks Allocated |
| :---: | :---: | :---: |
| - An amphiprotic substance can both donate and accept a proton | |
| - States an equation of HSO_{4}^{-}donating a proton | $1-3$ |
| - States an equation of HSO_{4}^{-}accepting a proton | |
| $\mathbf{3}$ | |

31.

(a)

$$
\begin{align*}
n\left(\mathrm{Ba}(\mathrm{OH})_{2}\right) & =n(\mathrm{OH}) \times \frac{1}{2} \\
& =0.0230 \times \frac{1}{2} \\
& =0.0115 \mathrm{~mol} \tag{1}\\
{\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]=} & \frac{n}{V} \\
= & \frac{0.0115}{0.025} \\
= & 0.46 \mathrm{~mol} \mathrm{~L}^{-1} \tag{1}
\end{align*}
$$

(b)

$$
\begin{array}{rlrl}
\boldsymbol{n}\left(\mathbf{H N O}_{\mathbf{3}}\right) & =c V & n\left(\mathrm{Ba}(\mathbf{O H})_{2}\right) & =c V \\
& =0.402 \times 0.08 & & =0.46 \times 0.04 \\
& =\mathbf{0 . 0 3 2 1 6} \mathbf{~ m o l} & & =0.0184 \mathrm{~mol} \\
& & & \\
\boldsymbol{n}\left(\mathbf{H}_{3} \boldsymbol{O}^{+}\right) & =n\left(\mathrm{HNO}_{3}\right) & n\left(\mathrm{OH}^{-}\right) & =n\left(\mathrm{Ba}\left(\mathrm{OH}_{2}\right)\right) \times 2 \\
& =\mathbf{0 . 0 3 2 1 6} \mathbf{~ m o l} & & =0.0184 \times 2
\end{array}
$$

$$
\begin{align*}
& \mathrm{H}_{3} \mathbf{O}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}\\
& \therefore n\left(\mathrm{OH}^{-}\right)_{\text {in excess }}=0.0368-\mathbf{0 . 0 3 2 1 6} \\
& =0.00464 \mathrm{~mol} \tag{1}\\
& {\left[\mathrm{OH}^{-}\right]=\frac{n\left(\mathrm{OH}^{-}\right)_{\text {in excess }}}{V_{a}+V_{b}}} \\
& =\frac{0.00464}{0.08+0.04} \\
& =0.03867 \mathrm{~mol} \mathrm{~L}^{-1} \tag{1}\\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1 \times 10^{-14}}{\left[\mathrm{OH}^{-}\right]}} \\
& =\frac{1 \times 10^{-14}}{0.03867} \\
& =2.586 \times 10^{-13} \mathrm{~mol} \mathrm{~L}^{-1} \\
& p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& =-\log \left[2.586 \times 10^{-13}\right] \\
& =12.6 \text { (1) }
\end{align*}
$$

32.

[12 marks]
(a)

(2)

Marking Criteria	Marks Allocated
\bullet Draws correct repeating monomer structure	$1-2$
\bullet Draws five repeating units	Total
	$\mathbf{2}$

(b)

	Low density polyethene (LDPE)	High density polyethene (HDPE)	Ultra-High molecular weight polyethene (UHMWE)
Properties	Low melting point (1)	Moderate strength (1)	Very high hardness (1)
Applications	Soft plastic bottles (1)	Rigid plastic bottles (1)	Bullet proof vest panels (1)

| Marking Criteria | Marks Allocated |
| :---: | :---: | :---: |
| \bullet States correct property for each type of polyethene | $1-3$ |
| • States correct application for each type of polyethene | $1-3$ |
| Total | $\mathbf{6}$ |

(c) Condensation polymerisation is different to addition polymerization because it is the joining two different monomer units which each contain two reactive functional groups instead of the joining of the same monomer unit by breaking a double bond (1). Examples of the types of reactants that can be used are those containing carboxylic acid or amine functional groups or one of each (1).

Marking Criteria	Marks Allocated
•Condensation poylmerisation is between two different monomer units with each containing two reactive functional groups - Reactants can be those that contain carboxylic acid or amine functional groups	$1-2$
Total	$\mathbf{2}$

(d)

Monomer 1

Monomer 2

Marking Criteria	Marks Allocated
\bullet Draws monomer 1 (benzenedioic acid)	$1-2$
\bullet Draws monomer 2 (benzene-1,4-diamine)	Total
$\mathbf{2}$	

33.

[5 marks]
Of the three options, cresolphthalein would be the most suitable indicator (1). When ethanoic acid and potassium hydroxide react under the following reaction: $\mathbf{K O H}_{(a q)}+\mathbf{C H}_{3} \mathbf{C O O H}_{(a q)} \rightarrow$ $\mathrm{KCH}_{3} \mathrm{COO}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(a q)}$ (1) they form the basic salt $\mathrm{KCH}_{3} \mathrm{COO}$. As shown in this equation: $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+\mathrm{OH}_{(a q)}^{-}$(1) the $\mathrm{KCH}_{3} \mathrm{COO}$ salt is basic and will therefore cause the equivalence point of the titration to be basic (1). As a result cresolphthalein should be used because it has a basic end point range (1).

Marking Criteria	Marks Allocated	
- Cresolphthalein is the most suitable indicator		
- Salt produced is $\mathrm{KCH} \mathrm{H}_{3} \mathrm{COO}: \mathrm{KOH}_{(a q)}+\mathrm{CH}_{3} \mathrm{COOH}_{(a q)} \rightarrow$		
	$\mathrm{KCH}_{3} \mathrm{COO}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(a q)}$	
- $\mathrm{KCH}_{3} \mathrm{COO}$ is basic: $\mathrm{KCH}_{3} \mathrm{COO}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+$	$1-5$	
	$\mathrm{OH}_{(a q)}^{-}$	
- A basic salt will cause the equivalence point to be basic		
- \quad Cresolphthalein should be used because it has a basic end point range		
Total		

34.

[7 marks]
(a)

Oxidation half-equation	$\mathbf{H}_{\mathbf{2}}^{(\boldsymbol{g})} \mathrm{+} \mathbf{2 O H}_{(a \boldsymbol{q})}^{-} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}_{(l)}+2 e^{-}$(1)
Reduction half-equation	$\mathrm{O}_{\mathbf{2}_{(\mathrm{g})}}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+4 \mathrm{e}^{-} \rightleftharpoons 40 \mathrm{H}^{-}(\mathrm{aq)}$ (1)

Marking Criteria	Marks Allocated
• Correct oxidation half-equation	$1-2$
Correct reduction half-equation	Total

(b)

$$
\begin{aligned}
E^{0} & =0.40+0.83 \\
& =1.23 V
\end{aligned}
$$

Marking Criteria	Marks Allocated
\bullet Calculates E^{0} of 1.23 V	1
	Total

(c) The IPHE was established to encourage the research and development of the hydrogen fuel cell and to develop codes and standards around their development and use (1). Some barriers to the widespread use of the hydrogen fuel cell are:

- Storage is difficult because hydrogen gas is highly explosive and oxygen gas is highly flammable (1)
- Hydrogen fuel cells are currently expensive to produce (1).
- Hydrogen gas is currently sourced from steam reforming which uses fossil fuels (1).

Marking Criteria	Marks Allocated
\bullet	Provides a brief statement about the purpose of the IPHE
\bullet	1
States three appropriate issues with the widespread use hydrogen fuel cells	$1-3$

Section 3: Extended Answer
40\% (93 marks)
35.
[19 marks]
(a)

Equation 1×3	$12 \mathrm{NH}_{3(g)}+15 \mathrm{O}_{2(g)} \rightarrow 12 \mathrm{NO}_{(g)}+18 \mathrm{H}_{2} \mathrm{O}_{(g)}$
Equation 2×6	$12 \mathrm{NO}_{(g)}+6 \mathrm{O}_{2(g)} \rightarrow 12 \mathrm{NO}_{2(g)}$
Equation 3×4	$12 \mathrm{NO}_{2(g)}+4 \mathrm{H}_{\mathbf{2}} \mathrm{O}_{(\mathrm{l})} \rightarrow 8 \mathrm{HNO}_{3(\mathrm{aq})}+4 \mathrm{NO}_{(g)}$

$$
12 \mathrm{~N} \theta_{(g)}+60_{(g)} \rightarrow 12 \mathrm{AO}(g)
$$

$$
\begin{equation*}
12 \mathrm{NO}_{2(g)}+4 \mathrm{H}_{2} \boldsymbol{\sigma}_{(l)} \rightarrow 8 \mathrm{HNO}_{3(a q)}+4 \mathrm{NO}_{(g)} \tag{1}
\end{equation*}
$$

$$
\mathbf{1 2 N H}_{3(\mathrm{aq})}+\mathbf{2 1 O}_{\mathbf{2}_{(\mathrm{g})}} \rightarrow 14 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+8 \mathrm{HNO}_{3(\mathrm{aq})}+4 \mathrm{NO}_{(\mathrm{g})} \text { (1) }
$$

Marking Criteria	Marks Allocated
- Balances each of the equations correctly	
- Cancels out correct reactants and products	$1-3$
- Provides correct overall equation	Total

(b) The third step of the Ostwald process is highly exothermic with an enthalpy of -348 kJ (1). If there were no cooling circuits the reaction chamber would heat up and the nitric acid would become a gaseous state (1). This would make it much more difficult to collect, as it is much harder to collect nitric acid in its gaseous form than in its aqueous form (1).

Marking Criteria	Marks Allocated
- The third step is highly exothermic	
- Without cooling circuits the reaction chamber will heat up and the nitric	
acid will be in a gaseous state	
- Nitric acid in a gaseous state is much more difficult to collect than in a	
liquid state	

(c)
(d)

$$
\begin{equation*}
\mathbf{6 N O} \mathbf{(g)}+\mathbf{4 \mathrm { NH } _ { \mathbf { 3 } _ { (g) } }} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}_{(g)}+5 \mathrm{~N}_{2_{(g)}} \tag{1}
\end{equation*}
$$

(e)

$$
\begin{align*}
\boldsymbol{n}(\mathbf{N O})_{\text {per minute }} & =\frac{P V_{\text {per min }}}{R T} \times \text { purity } \\
& =\frac{200 \times 20}{8.314 \times(100+273.15)} \times 0.012 \\
& =\mathbf{0 . 0 1 5 4 7} \mathbf{~ m o l} \text { per min } \tag{3}
\end{align*}
$$

$$
\begin{aligned}
\boldsymbol{n}(\mathrm{NO})_{8 \text { hours }}= & n(N O)_{\text {per min }} \times 60 \times 8 \\
& =0.01547 \times 60 \times 8 \\
& =7.4256 \mathrm{~mol}
\end{aligned}
$$

$$
n\left(\mathrm{NH}_{3}\right)_{8 \text { hours }}=n(\mathrm{NO})_{8 \text { hours }} \times \frac{4}{6}
$$

$$
=7.4256 \times \frac{4}{6}
$$

$$
\begin{equation*}
=4.950 \mathrm{~mol} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
V\left(N H_{3}\right) & =n\left(N H_{3}\right) \times 22.71 \\
& =4.950 \times 22.71 \\
& =112.4 \mathrm{~L}
\end{aligned}
$$

$$
\begin{align*}
& n\left(\mathrm{NH}_{3}\right)=\frac{10 \times 10^{3}}{14.01+3 \times 1.008} \\
& =587.1 \mathrm{~mol} \tag{1}\\
& n\left(\mathrm{HNO}_{3}\right)_{\text {theoretical }}=\boldsymbol{n}\left(\mathrm{NH}_{3}\right) \times \frac{8}{12} \\
& =587.1 \times \frac{8}{12} \\
& =391.4 \mathrm{~mol} \tag{1}\\
& n\left(\mathrm{HNO}_{3}\right)_{\text {actual }}=c V \\
& =7.00 \times 50 \\
& =350 \mathrm{~mol} \tag{1}\\
& \text { Efficiency }=\frac{n\left(\mathrm{HNO}_{3}\right)_{\text {actual }}}{n\left(\mathrm{HNO}_{3}\right)_{\text {theoretical }}} \times 100 \\
& =\frac{350}{391.4} \times 100 \\
& =89.4 \%
\end{align*}
$$

36.

[13 marks]
(a)

Marking Criteria	Marks Allocated
• Draws $\mathrm{COO}^{-} \mathrm{Na}^{+}$polar head of soap	
- Draws water molecule forming hydrogen bond	$1-3$
- Draws water molecule forming ion-dipole forces	
Total	$\mathbf{3}$

(b)

Marking Criteria	Marks Allocated
• Writes correct reactants and products	$1-2$
Balances equation correctly	Total

Points to note: You can write the equation in its condensed structural formula or even in its worded form (as long as it is correctly balanced) and still receive the marks.
(c) When there are grease stain, the soap/detergent micelle positions itself around the grease stain (1). The ionic polar head remains on the outside, being dissolved in the water from forming strong hydrogen bonds (1) and ion-dipole forces (1). The non-polar tail dissolves in the grease stain because they are both large hydrocarbons with similar sized dispersion forces (1). Vigorous agitation of the mixture allows the micelles to be released from the object (1). Once released, the grease particles are in a stable micelle arrangement, allowing them to be suspended in the water and can be washed away (1). Hard water contains Ca^{2+} and Mg^{2+} ions in high concentrations, and the soap will form precipitate with these ions (e.g. $\mathbf{C a}_{(a q)}^{2+}+2 \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COO}_{(a q)}^{-} \rightarrow$ $\left.\mathrm{Ca}\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COO}\right)_{2(s)}\right)(\mathbf{1})$. This scum means that the soap is wasted and does not clean as effectively (1).

Marking Criteria	Marks Allocated
- Soap forms a micelle arrangement around the grease stain - The ionic polar head forms strong hydrogen bonds with water (allowing it to dissolve) - The ionic polar head also forms ion-dipole forces with water (allowing it to dissolve) - The non-polar tail forms dispersion forces with the grease stain (allowing it to dissolve) - Agitation releases the mixture from the object - The grease and soap are in a micelle arrangement, allowing it to be suspended in water and washed away	1-6
- Soap precipitates with the Ca^{2+} and Mg^{2+} ions in hard water - The scum formed means soap is wasted and it doesn't clean as effectively	1-2
Total	8

37.

$$
\begin{align*}
\boldsymbol{n}\left(\boldsymbol{C O}_{2}\right) & =\frac{18.493}{44.01} \\
& =\mathbf{0 . 4 2 0 2 ~ m o l} \\
\boldsymbol{n}(\boldsymbol{C})= & n\left(\mathrm{CO}_{2}\right) \\
= & \mathbf{0 . 4 2 0 2} \mathbf{~ m o l} \\
\boldsymbol{m}(\boldsymbol{C}) & =n M \tag{1}\\
= & 0.4202 \times 12.01 \\
= & 5.047 \mathrm{~g} \quad \text { (1) } \tag{1}\\
\%(\boldsymbol{C}) & =\frac{5.047}{10.20} \times 100 \\
& =49.48 \% \quad \text { (1) } \tag{1}
\end{align*}
$$

$$
\%(H)=\frac{0.5294}{10.20} \times 100
$$

$$
\begin{aligned}
n\left(H_{2} \mathrm{O}\right) & =\frac{4.731}{18.016} \\
& =0.2626 \mathrm{~mol}
\end{aligned}
$$

[17 marks]

$$
n(H)=n\left(H_{2} O\right) \times 2
$$

$$
=0.2626 \times 2
$$

$$
=0.5252 \mathrm{~mol}
$$

$$
m(H)=n M
$$

$$
=0.5252 \times 1.008
$$

$$
=0.5294 \mathrm{~g}
$$

$$
=5.19 \%
$$

$$
\mathrm{NH}_{3(a q)}+\mathrm{HCl}_{(a q)} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}_{(a q)}
$$

$$
n(H C l)=c V
$$

$$
=2.00 \times 0.01762
$$

$$
=0.03524 \mathrm{~mol}(1)
$$

$$
\begin{align*}
& n\left(\mathrm{NH}_{3}\right)_{25 m L}=n(\mathrm{HCl}) \\
& =0.03524 \mathrm{~mol} \\
& n\left(\mathrm{NH}_{3}\right)_{100 m L}=n\left(\mathrm{NH}_{3}\right)_{25 m L} \times \frac{100}{25} \\
& =0.03524 \times 4 \\
& =0.1410 \mathrm{~mol} \text { (1) } \\
& \boldsymbol{n}(\boldsymbol{N})=n\left(\mathrm{NH}_{3}\right) \\
& =0.1410 \mathrm{~mol} \text { (1) } \\
& \boldsymbol{m}(\boldsymbol{N})=n M \\
& =0.1410 \times 14.01 \\
& =1.975 \mathrm{~g} \\
& \%(N)=\frac{1.975}{6.843} \times 100 \\
& =\mathbf{2 8 . 8 6} \% \tag{1}\\
& \%(O)=100-\%(C)-\%(H)-\%(N) \\
& =100-49.48-5.19-28.86 \\
& =16.47 \% \\
& \text { (1) }
\end{align*}
$$

	C	H	N	0
Mass in 100 g	49.48 g	5.19 g	28.86 g	16.47 g
Moles	$\frac{49.48}{12.01}=4.120 \mathrm{~mol}$	$\frac{5.19}{1.008}=5.149 \mathrm{~mol}$	$\frac{28.86}{14.01}=2.06 \mathrm{~mol}$	$\frac{16.47}{16.00}=1.029 \mathrm{~mol}$
Simple Ratio	$\frac{4.120}{1.029}=4.004$	$\frac{5.149}{1.029}=5.004$	$\frac{2.06}{1.029}=2.002$	$\frac{1.029}{1.029}=1$
Whole Ratio	4	5	2	1

\therefore the empirical formula is $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$

$$
\begin{aligned}
\boldsymbol{n}(\text { Compound }) & =\frac{P V}{R T} \\
& =\frac{110 \times 11.824}{8.314 \times(63+273.15)} \\
& =\mathbf{0 . 4 6 5 4 ~ \mathrm { mol }} \text { (1) } \\
M(\text { Compound }) & =\frac{m}{n} \\
& =\frac{90.38}{0.4654} \\
& =\mathbf{1 9 4 . 2} \mathrm{g} \mathrm{~mol}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
\text { Ratio } & =\frac{M(\text { Compound })}{M(\text { Empirical })} \\
& =\frac{194.2}{12.01 \times 4+1.008 \times 5+14.01 \times 2+16} \\
& =2 \quad \text { (1) }
\end{aligned}
$$

$$
\begin{align*}
\text { Molecular } & =\text { Empirical } \times \mathbf{2} \\
& =C_{4} H_{5} N_{2} \mathrm{O} \times 2 \\
& =C_{\mathbf{8}} \mathbf{H}_{10} \mathbf{N}_{\mathbf{4}} \mathrm{O}_{\mathbf{2}} \tag{1}
\end{align*}
$$

38.

(a)

$$
\begin{equation*}
\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}{ }_{(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)} \tag{2}
\end{equation*}
$$

Marking Criteria	Marks Allocated
• Writes correct reactants and products	$1-2$
\bullet Has \rightleftharpoons to show it is an equilibrium system	Total
	$\mathbf{2}$

(b)

$$
K_{c}=\frac{\left[C_{6} H_{7} O_{7}^{-}\right]\left[H_{3} O^{+}\right]}{\left[C_{6} H_{7} O_{8}\right]}
$$

(2)

Marking Criteria	Marks Allocated
• Writes correct equilibrium constant	$1-2$
• Does not include water in constant	Total
	$\mathbf{2}$

(c) $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$which are the conjugate base and conjugate acid respectively (1).

Marking Criteria	Marks Allocated
$\bullet \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$	1
	Total

(d) When the concentration of $\boldsymbol{H}_{3} \boldsymbol{O}^{+}$increases, the pH will decrease (1). According to Le Chatelier's principle, the system will act to partially oppose this change by favouring the reverse reaction to consume some of the of $\boldsymbol{H}_{3} \boldsymbol{O}^{+}$ions (1). This will mean that the pH will not change significantly (1), so the jam will not become sour until all of the $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}$has been consumed (1).

Marking Criteria	Marks Allocated
- When the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration increases, the pH will decrease	
- According to LCP the reverse reaction will be favoured	
- A favoured reverse reaction will mean the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration/pH will	$1-4$
not change significantly	
- The jam will not become sour until the buffering capacity is reached	
Total	$\mathbf{4}$

(e) When the concentration of atmospheric $\mathbf{C O}_{2}$ increases, the system $\mathbf{C O}_{\mathbf{2 (g)}} \rightleftharpoons \mathrm{CO}_{2(a q)}$ will have a favoured forward reaction, increasing the amount of dissolved CO_{2} (1). An increased amount of dissolved CO_{2} will increase the amount of carbonic acid in our oceans from favouring the forward reaction of: $\mathrm{CO}_{2(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3(a q)}$ (1). More carbonic acid produces more hydronium ions which favours the reverse reaction of the second ionisation of $\mathrm{H}_{2} \mathrm{CO}_{3}: \mathrm{HCO}_{3(a q)}^{-}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons$ $\mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{CO}_{3}^{2-}(a q)$ decreasing the concentration of CO_{3}^{2-} (1). This will favour the forward reaction of the system: $\mathrm{CaCO}_{3(s)} \rightleftharpoons \mathrm{Ca}_{(a q)}^{2+}+\mathrm{CO}_{3}^{2-}(a q)$ consuming calcium carbonate (1). With less CaCO_{3} in our oceans, it becomes progressively more difficult for reefs and marine organisms to produce and maintain structures/shells (1).

Marking Criteria	Marks Allocated
- Dissolved CO_{2} concentration increases: $\mathrm{CO}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CO}_{2(a q)}$ - Carbonic acid concentration increases $\mathrm{CO}_{2(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}$ - Carbonate ion concentration decreases $\mathrm{HCO}_{3(a q)}^{-}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons$ $\mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{CO}_{3}^{2-}(a q)$ - Amount of calcium carbonate in oceans decreases $\mathrm{CaCO}_{3(s)} \rightleftharpoons \mathrm{Ca}_{(a q)}^{2+}+$ $\mathrm{CO}_{3}^{2-}(a q)$ - Less calcium carbonate means it is more difficult for reefs/marine organisms to form their structures/shells	1-5
Total	5

Points to note: To write a concise answer focus mainly on the equations as this is where the marks mostly come from.
39.
[18 marks]
(a)

$$
\begin{aligned}
\text { Average titre } & =\frac{22.50+22.45+22.55}{3} \\
& =\mathbf{2 2 . 5 0} \mathbf{m L} \quad(2)
\end{aligned}
$$

Marking Criteria	Marks Allocated
• Determines correct average titre	$1-2$
• Does not include trial 1	Total
$\mathbf{2}$	

(b)

$$
\begin{equation*}
\text { Titration: } 2 \mathrm{KOH}_{(a q)}+\mathrm{H}_{2} \mathrm{SO}_{4(a q)} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4(a q)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
n\left(\mathrm{H}_{2} \mathbf{S O}_{4}\right) & =c V \\
& =0.04 \times 0.02250 \\
& =\mathbf{9 . 0 0} \times \mathbf{1 0}^{-4} \mathbf{~ m o l} \tag{1}
\end{align*}
$$

$$
n(\mathrm{KOH})_{\text {aliquot }}=n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) \times 2
$$

$$
=9.00 \times 10^{-4} \times 2
$$

$$
=1.8 \times 10^{-3} \mathrm{~mol}
$$

$$
\therefore n(\mathrm{KOH})_{\text {in excess }}=n(\mathrm{KOH})_{\text {aliquot }} \times \frac{250}{25}
$$

$$
=1.8 \times 10^{-3} \times 10
$$

$$
\begin{equation*}
=0.018 \mathrm{~mol} \tag{1}
\end{equation*}
$$

Dissolving of aspirin: $\quad \mathrm{C}_{\mathbf{9}} \boldsymbol{H}_{\mathbf{8}} \boldsymbol{O}_{\mathbf{4 (s)}}+\mathrm{KOH}_{(a q)} \rightarrow \mathrm{KC}_{9} \mathrm{H}_{7} \mathrm{O}_{4(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$

$$
\begin{align*}
& \therefore n(\mathrm{KOH})_{\text {total }}=c V \\
&=0.180 \times 0.150 \\
&=0.027 \mathrm{~mol} \\
& n(\mathrm{KOH})_{\text {initially }} \text { reacted }=n(\mathrm{KOH})_{\text {total }}-n(\mathrm{KOH})_{\text {in excess }} \\
&=0.027-0.018 \\
&=0.009 \mathrm{~mol} \tag{1}\\
& \\
& \boldsymbol{n}\left(\boldsymbol{C}_{\mathbf{9}} \mathbf{H}_{\mathbf{8}} \mathbf{O}_{\mathbf{4}}\right)= n(\mathrm{KOH})_{\text {initially reacted }} \\
&=\mathbf{0 . 0 0 9} \text { mol }
\end{align*}
$$

(c)

$$
\begin{align*}
M\left(C_{9} H_{8} O_{4}\right) & =9 \times 12.01+8 \times 1.008+4 \times 16 \\
& =\mathbf{1 8 0 . 1 5 4} \mathrm{g} \mathrm{~mol}^{-1} \tag{1}
\end{align*}
$$

If 0.009 mol is used:

$$
\begin{aligned}
m\left(\boldsymbol{C}_{9} \boldsymbol{H}_{8} \mathrm{O}_{4}\right) & =n M \\
& =0.009 \times 180.154 \\
& =\mathbf{1 . 6 2 1} \mathrm{g}
\end{aligned}
$$

If 0.0085 mol is used:

Percentage by Mass $=\frac{m\left(C_{9} H_{8} O_{4}\right)}{m(\text { Aspirin })} \times 100$

$$
\begin{aligned}
& =\frac{1.621}{1.70} \times 100 \\
& =\mathbf{9 5 . 4} \%
\end{aligned}
$$

$$
\begin{aligned}
m\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right) & =n M \\
& =0.0085 \times 180.154 \\
& =1.531 \mathrm{~g} \quad \text { (1) }
\end{aligned}
$$

Percentage by Mass $=\frac{m\left(C_{9} H_{8} O_{4}\right)}{m(\text { Aspirin })} \times 100$
$=\frac{1.531}{1.70} \times 100$
$=90.05 \%$
(d) Drug X will not be approved (1).

Marking Criteria	Marks Allocated
\bullet Drug X will not be approved	1
Total	$\mathbf{1}$

(e)

	Effect on sulfuric acid average titre volume	Effect on \% by mass of aspirin calculated
The top of the meniscus on the burette was read consistently instead of the bottom	No effect (1)	No effect (1)
Thymolthalein indicator (pH range $8.8-10$) was used instead of bromothymol blue (pH range 6.0-7.6)	Decrease (1)	Increase (1)

Marking Criteria	Marks Allocated
\bullet Correctly states increase, decrease or no effect	$1-4$
Total	4

Points to note: If you consistently read from the same point on a meniscus when starting and finishing a titration, the titre volume will be the same irrespective of whether you read from the top or bottom (so this change has no effect). The thymolthalein indicator has a basic pH range and the equivalence point is neutral. As KOH is in the conical flask we start at a basic pH and move towards an acidic pH , so the end point will be reached before the equivalence point (giving a smaller $\mathrm{H}_{2} \mathrm{SO}_{4}$ titre volume). With a smaller $\mathrm{H}_{2} \mathrm{SO}_{4}$ volume, it appears that there is less excess $K O H$. This means that it appears that more $K O H$ was required to react with the aspirin, thus giving the aspirin a higher percentage by mass.
40.
[12 marks]
(a) When the pressure of the system is increased, according to Le Chatelier's Principle, the system will act to partially oppose this by favouring the forward reaction due to a $4: 2$ molar ratio (1). With a favoured forward reaction the yield will increase from more ammonia being produced (1). Also, a higher pressure will also increase the reaction rate due to an increase in the collision frequency (1). As a result a very high pressure is used because it optimizes both the reaction rate and yield of the reaction (1).

| Marking Criteria | Marks Allocated |
| :--- | :--- | :---: |
| - From an increase in pressure, system will favour forward reaction due | |
| | to 4:2 molar ratio |
| - A favoured forward reaction will increase the reaction yield | |
| - A higher pressure will also increase the reaction rate from an increase in | |
| collision frequency | |
| - A very high pressure is used because it optimises both reaction rate and | |
| yield | |$\quad 1-4$

(b)

When the temperature is increased, the average kinetic energy of the particles increases (1). A higher average kinetic energy means particles will move faster and therefore have a higher collision frequency (1). As shown on the Maxwell Botlzmann curve, a higher average kinetic energy also means the proportion of successful collisions will increase (1), thus increasing the reaction rate for the forward and reverse reactions (1). However, there will be a greater increase in the proportion of successful collisions for the endothermic reverse reaction (1), thus creating a net reverse reaction which decreases the yield (1). As a result, a compromise is made between the reaction rate and yield thus a moderate temperature of $350-550^{\circ} \mathrm{C}$ is selected (1).

Marking Criteria	Marks Allocated
\bullet	A temperature increase will increase the average kinetic energy of the particles
\bulletThe collision frequency will increase from an increase in average kinetic energy	$1-6$

- The proportion of successful collisions will increase from an increase in average kinetic energy
- The proportion of successful collisions will increase more for the endothermic reverse reaction
- A net reverse reaction decreases the yield
- A moderate temperature is used to find a compromise between reaction rate and yield
- Appropriate Maxwell Boltzmann curve drawn
- Maxwell Boltzmann curve is appropriately labelled

[^0]: Point to note: Part 2(c) doesn'tactually work, but hopefully the process for determing the monomers is understood

